Elastic electron - Proton Scattering at Large Four Momentum Transfer

Kirk, Paul N. ; Breidenbach, Martin ; Friedman, Jerome I. ; et al.
Phys.Rev.D 8 (1973) 63-91, 1973.
Inspire Record 73424 DOI 10.17182/hepdata.21999

Electron-proton elastic-scattering cross sections have been measured at the Stanford Linear Accelerator Center for four-momentum transfers squared q 2 from 1.0 to 25.0 (GeVc)2. The electric (GEp) and magnetic (GMp) form factors of the proton were not separated, since angular distributions were not measured at each q 2. However, values for GMp were derived assuming various relations between GEp and GMp. Several theoretical models for the behavior of the proton magnetic form factor at high values of q 2 are compared with the data.

22 data tables

No description provided.

No description provided.

No description provided.

More…

Version 2
Investigation of the rho-meson resonance with electron-positron colliding beams

Auslander, V.L. ; Budker, G.I. ; Pakhtusova, E.V. ; et al.
Yad.Fiz. 9 (1969) 114-119, 1969.
Inspire Record 57008 DOI 10.17182/hepdata.18687

None

2 data tables

Measured value of the pion form factor

Fitted peak cross section.


Some Recent Measurements of Proton Form Factors

Albrecht, W. ; Behrend, H.-J. ; Dorner, H. ; et al.
Phys.Rev.Lett. 18 (1967) 1014-1015, 1967.
Inspire Record 52298 DOI 10.17182/hepdata.21769

None

6 data tables

No description provided.

No description provided.

No description provided.

More…

Proton form factors from elastic electron-proton scattering

Janssens, T. ; Hofstadter, R. ; Hughes, E.B. ; et al.
Phys.Rev. 142 (1966) 922-931, 1966.
Inspire Record 49127 DOI 10.17182/hepdata.26698

Absolute measurements of the elastic electron-proton cross section have been made with a precision of about 4% for values of the square of the four-momentum transfer, q2, in the range 6.0 to 30.0 F−2 and for electron scattering angles in the range 45° to 145°. To within the experimental errors, it is found that the charge and magnetic form factors of the proton have a common dependence on q2 when normalized to unity at q2=0, and that an accurate representation of the behavior of the form factor and that of the cross sections themselves can be given in terms of a three-pole approximation to the dispersion theory of nucleon form factors.

27 data tables

Axis error includes +- 2./2. contribution (RANDOM ERROR).

Axis error includes +- 2./2. contribution (RANDOM ERROR).

Axis error includes +- 2./2. contribution (RANDOM ERROR).

More…

Electron-Proton Scattering at High-Momentum Transfer

Berkelman, K. ; Feldman, M. ; Littauer, R.M. ; et al.
Phys.Rev. 130 (1963) 2061-2068, 1963.
Inspire Record 46839 DOI 10.17182/hepdata.26788

The elastic electron-proton scattering cross section has been measured at laboratory angles between 90° and 144° and for values of the four-momentum transfer squared between 25 and 45 F−2 (incident electron laboratory energies from 830 to 1360 MeV). Both the scattered electrons and the recoil protons were momentum analyzed and counted in coincidence, making possible background-free measurements down to cross sections of the order of 10−35 cm2/sr. The data are consistent with the Rosenbluth formula, and the resulting form factors tie on well with previous measurements at lower momentum transfer, continuing the established trend.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Precise Neutron and Proton Form Factors at Low Momentum Transfers

Drickey, D.J. ; Hand, L.N. ;
Phys.Rev.Lett. 9 (1962) 521-524, 1962.
Inspire Record 46895 DOI 10.17182/hepdata.19350

None

15 data tables

No description provided.

No description provided.

No description provided.

More…

EXCITATION OF THE 15.1-MeV AND 16.1-MeV LEVELS OF THE C-12 NUCLEUS BY ELECTRON SCATTERING

Dudelzak, B. ; Taylor, R.E. ;
J.Phys.Radium 22 (1961) 544, 1961.
Inspire Record 16520 DOI 10.17182/hepdata.37717

None

6 data tables

No description provided.

No description provided.

No description provided.

More…