Dijet azimuthal correlations and conditional yields in $pp$ and $p$+Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.C 100 (2019) 034903, 2019.
Inspire Record 1717481 DOI 10.17182/hepdata.93905

This paper presents a measurement of forward-forward and forward-central dijet azimuthal angular correlations and conditional yields in proton-proton ($pp$) and proton-lead ($p$+Pb) collisions as a probe of the nuclear gluon density in regions where the fraction of the average momentum per nucleon carried by the parton entering the hard scattering is low. In these regions, gluon saturation can modify the rapidly increasing parton distribution function of the gluon. The analysis utilizes 25 pb$^{-1}$ of $pp$ data and 360 $\mu \mathrm{b}^{-1}$ of $p$+Pb data, both at $\sqrt{s_{\rm NN}}$ = 5.02 TeV, collected in 2015 and 2016, respectively, with the ATLAS detector at the LHC. The measurement is performed in the center-of-mass frame of the nucleon-nucleon system in the rapidity range between $-$4.0 and 4.0 using the two highest transverse momentum jets in each event, with the highest transverse momentum jet restricted to the forward rapidity range. No significant broadening of azimuthal angular correlations is observed for forward-forward or forward-central dijets in $p$+Pb compared to $pp$ collisions. For forward-forward jet pairs in the proton-going direction, the ratio of conditional yields in $p$+Pb collisions to those in $pp$ collisions is suppressed by approximately 20%, with no significant dependence on the transverse momentum of the dijet system. No modification of conditional yields is observed for forward-central dijets.

11 data tables

Unfolded azimuthal angular correlation distributions. Black markers represent p+Pb, red markers p+p

Unfolded width of azimuthal angular correlation distributions. Full markers represent p+Pb, open markers p+p

Unfolded Dijet conditional yields. Full markers represent p+Pb, open markers p+p

More…

Measurement of Dijet Azimuthal Decorrelations in pp Collisions at sqrt(s)=7 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 106 (2011) 172002, 2011.
Inspire Record 889546 DOI 10.17182/hepdata.58478

Azimuthal decorrelations between the two central jets with the largest transverse momenta are sensitive to the dynamics of events with multiple jets. We present a measurement of the normalized differential cross section based on the full dataset (L=36/pb) acquired by the ATLAS detector during the 2010 sqrt(s)=7 TeV proton-proton run of the LHC. The measured distributions include jets with transverse momenta up to 1.3 TeV, probing perturbative QCD in a high energy regime.

9 data tables

Distribution for the maxPT jet (P=3) from 110 to 160 GeV.

Distribution for the maxPT jet (P=3) from 160 to 210 GeV.

Distribution for the maxPT jet (P=3) from 210 to 260 GeV.

More…

Measurement of differential $b\bar{b}$- and $c\bar{c}$-dijet cross-sections in the forward region of $pp$ collisions at $\sqrt{s}=13 ~ \mathrm{TeV}$

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
JHEP 02 (2021) 023, 2021.
Inspire Record 1823739 DOI 10.17182/hepdata.110430

The inclusive $b \bar{b}$- and $c \bar{c}$-dijet production cross-sections in the forward region of $pp$ collisions are measured using a data sample collected with the LHCb detector at a centre-of-mass energy of 13 TeV in 2016. The data sample corresponds to an integrated luminosity of 1.6 fb$^{-1}$. Differential cross-sections are measured as a function of the transverse momentum and of the pseudorapidity of the leading jet, of the rapidity difference between the jets, and of the dijet invariant mass. A fiducial region for the measurement is defined by requiring that the two jets originating from the two $b$ or $c$ quarks are emitted with transverse momentum greater than 20 GeV$/c$, pseudorapidity in the range $2.2 < \eta < 4.2$, and with a difference in the azimuthal angle between the two jets greater than 1.5. The integrated $b \bar{b}$-dijet cross-section is measured to be $53.0 \pm 9.7$ nb, and the total $c \bar{c}$-dijet cross-section is measured to be $73 \pm 16$ nb. The ratio between $c \bar{c}$- and $b \bar{b}$-dijet cross-sections is also measured and found to be $1.37 \pm 0.27$. The results are in agreement with theoretical predictions at next-to-leading order.

17 data tables

The total $b \bar{b}$-dijet and $c \bar{c}$-dijet cross-sections and their ratio in the fiducial region, compared with the NLO predictions. The first uncertainty is the combined statistical and systematic uncertainty and the second is the uncertainty from the luminosity. For the predictions, the first uncertainty corresponds to the scale uncertainty, the second to the PDF uncertainty.

Numerical results of $b \bar{b}$- and $c \bar{c}$-dijet cross-sections, $c \bar{c}$/$b \bar{b}$ dijet cross-section ratios and their total uncertainties as a function of the leading jet $\eta$ (pseudorapidity).

Numerical results of $b \bar{b}$- and $c \bar{c}$-dijet cross-sections, $c \bar{c}$/$b \bar{b}$ dijet cross-section ratios and their total uncertainties as a function of $\Delta y^*$.

More…

Measurement of dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 05 (2014) 059, 2014.
Inspire Record 1268975 DOI 10.17182/hepdata.62289

Double-differential dijet cross sections measured in pp collisions at the LHC with a 7 TeV centre-of-mass energy are presented as functions of dijet mass and rapidity separation of the two highest-pT jets. These measurements are obtained using data corresponding to an integrated luminosity of 4.5/fb, recorded by the ATLAS detector in 2011. The data are corrected for detector effects so that cross sections are presented at the particle level. Cross sections are measured up to 5 TeV dijet mass using jets reconstructed with the anti-kt algorithm for values of the jet radius parameter of 0.4 and 0.6. The cross sections are compared with next-to-leading-order perturbative QCD calculations by NLOJET++ corrected to account for non-perturbative effects. Comparisons with POWHEG predictions, using a next-to-leading-order matrix element calculation interfaced to a parton-shower Monte Carlo simulation, are also shown. Electroweak effects are accounted for in both cases. The quantitative comparison of data and theoretical predictions obtained using various parameterizations of the parton distribution functions is performed using a frequentist method. An example setting a lower limit on the compositeness scale for a model of contact interactions is presented, showing that the unfolded results can be used to constrain contributions to dijet production beyond that predicted by the Standard Model.

12 data tables

Measured double-differential dijet cross sections for the range 0.0 <= y* < 0.5 and jet radius parameter R = 0.4. The statistical uncertainties from data and MC simulation have been combined. The three columns correspond to nominal, stronger or weaker correlations between jet energy scale uncertainty components.

Measured double-differential dijet cross sections for the range 0.5 <= y* < 1.0 and jet radius parameter R = 0.4. The statistical uncertainties from data and MC simulation have been combined. The three columns correspond to nominal, stronger or weaker correlations between jet energy scale uncertainty components.

Measured double-differential dijet cross sections for the range 1.0 <= y* < 1.5 and jet radius parameter R = 0.4. The statistical uncertainties from data and MC simulation have been combined. The three columns correspond to nominal, stronger or weaker correlations between jet energy scale uncertainty components.

More…

Measurement of dijet production with a veto on additional central jet activity in pp collisions at sqrt(s)=7 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2011) 053, 2011.
Inspire Record 917526 DOI 10.17182/hepdata.57626

A measurement of jet activity in the rapidity interval bounded by a dijet system is presented. Events are vetoed if a jet with transverse momentum greater than 20 GeV is found between the two boundary jets. The fraction of dijet events that survive the jet veto is presented for boundary jets that are separated by up to six units of rapidity and with mean transverse momentum 50 < pT(avg) < 500 GeV. The mean multiplicity of jets above the veto scale in the rapidity interval bounded by the dijet system is also presented as an alternative method for quantifying perturbative QCD emission. The data are compared to a next-to-leading order plus parton shower prediction from the POWHEG-BOX, an all-order resummation using the HEJ calculation and the PYTHIA, HERWIG++ and ALPGEN event generators. The measurement was performed using pp collisions at sqrt(s)=7 TeV using data recorded by the ATLAS detector in 2010.

43 data tables

The Gap Fraction as a function of the mean transverse momentum of the boundary jets for boundary jets having a rapidity difference in the range [1,2], using a jet veto Q0 = 20 GeV. Data are shown for two dijet selections: (i) the dijet system is defined as the two leading-pT jets in the event (ii) the dijet system is defined as the most forward-backward jets in the event.

The Gap Fraction as a function of the mean transverse momentum of the boundary jets for boundary jets having a rapidity difference in the range [2,3], using a jet veto Q0 = 20 GeV. Data are shown for two dijet selections: (i) the dijet system is defined as the two leading-pT jets in the event (ii) the dijet system is defined as the most forward-backward jets in the event.

The Gap Fraction as a function of the mean transverse momentum of the boundary jets for boundary jets having a rapidity difference in the range [3,4], using a jet veto Q0 = 20 GeV. Data are shown for two dijet selections: (i) the dijet system is defined as the two leading-pT jets in the event (ii) the dijet system is defined as the most forward-backward jets in the event.

More…

Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Eur.Phys.J.C 71 (2011) 1512, 2011.
Inspire Record 871366 DOI 10.17182/hepdata.56004

Jet cross sections have been measured for the first time in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector. The measurement uses an integrated luminosity of 17 nb-1 recorded at the Large Hadron Collider. The anti-kt algorithm is used to identify jets, with two jet resolution parameters, R = 0.4 and 0.6. The dominant uncertainty comes from the jet energy scale, which is determined to within 7% for central jets above 60 GeV transverse momentum. Inclusive single-jet differential cross sections are presented as functions of jet transverse momentum and rapidity. Dijet cross sections are presented as functions of dijet mass and the angular variable $\chi$. The results are compared to expectations based on next-to-leading-order QCD, which agree with the data, providing a validation of the theory in a new kinematic regime.

26 data tables

Inclusive jet double-differential cross sections in the |rapidity| range 0 to 0.3, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.

Inclusive jet double-differential cross sections in the |rapidity| range 0.3 to 0.8, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.

Inclusive jet double-differential cross sections in the |rapidity| range 0.8 to 1.2, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.

More…

Measurement of inclusive jet and dijet production in $pp$ collisions at $\sqrt{s}=7$ TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 86 (2012) 014022, 2012.
Inspire Record 1082936 DOI 10.17182/hepdata.58163

Inclusive jet and dijet cross sections have been measured in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector at the Large Hadron Collider. The cross sections were measured using jets clustered with the anti-kT algorithm with parameters R=0.4 and R=0.6. These measurements are based on the 2010 data sample, consisting of a total integrated luminosity of 37 inverse picobarns. Inclusive jet double-differential cross sections are presented as a function of jet transverse momentum, in bins of jet rapidity. Dijet double-differential cross sections are studied as a function of the dijet invariant mass, in bins of half the rapidity separation of the two leading jets. The measurements are performed in the jet rapidity range |y|<4.4, covering jet transverse momenta from 20 GeV to 1.5 TeV and dijet invariant masses from 70 GeV to 5 TeV. The data are compared to expectations based on next-to-leading order QCD calculations corrected for non-perturbative effects, as well as to next-to-leading order Monte Carlo predictions. In addition to a test of the theory in a new kinematic regime, the data also provide sensitivity to parton distribution functions in a region where they are currently not well-constrained.

32 data tables

Inclusive jet PT distribution for the |y| range 0.0-0.3 and R=0.4.

Inclusive jet PT distribution for the |y| range 0.3-0.8 and R=0.4.

Inclusive jet PT distribution for the |y| range 0.8-1.2 and R=0.4.

More…

Measurement of single-diffractive dijet production in proton-proton collisions at $\sqrt{s} =$ 8 TeV with the CMS and TOTEM experiments

The CMS & TOTEM collaborations Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 1164, 2020.
Inspire Record 1782637 DOI 10.17182/hepdata.94257

Measurements are presented of the single-diffractive dijet cross section and the diffractive cross section as a function of the proton fractional momentum loss $\xi$ and the four-momentum transfer squared $t$. Both processes pp$\to$pX and pp$\to$Xp, ie with the proton scattering to either side of the interaction point, are measured, where X includes at least two jets; the results of the two processes are averaged. The analyses are based on data collected simultaneously with the CMS and TOTEM detectors at the LHC in proton-proton collisions at $\sqrt{s}$= 8 TeV during a dedicated run with $\beta^{\ast} =$ 90 m at low instantaneous luminosity and correspond to an integrated luminosity of 37.5 nb$^{-1}$. The single-diffractive dijet cross section $\sigma^\mathrm{pX}_{\mathrm{jj}}$, in the kinematic region $\xi \lt$ 0.1, 0.03 $\lt |$t$| \lt 1$ GeV$^2$, with at least two jets with transverse momentum $p_\mathrm{T} >$ 40 GeV, and pseudorapidity $|\eta| \lt$ 4.4, is 21.7$\pm$0.9 (stat)$^{+3.0}_{-3.3}$ (syst) $\pm$ 0.9 (lum) nb. The ratio of the single-diffractive to inclusive dijet yields, normalised per unit of $\xi$, is presented as a function of $x$, the longitudinal momentum fraction of the proton carried by the struck parton. The ratio in the kinematic region defined above, for $x$ values in the range $-$2.9 $\leq \log_{10} x \leq$$-$1.6, is $R = (\sigma^\mathrm{pX}_{\mathrm{jj}}/\Delta\xi)/\sigma_{\mathrm{jj}} =$ 0.025$\pm$0.001 (stat) $\pm$ 0.003 (syst), where $\sigma^\mathrm{pX}_{\mathrm{jj}}$ and $\sigma_{\mathrm{jj}}$ are the single-diffractive and inclusive dijet cross sections, respectively. The results are compared with predictions from models of diffractive and nondiffractive interactions. Monte Carlo predictions based on the HERA diffractive parton distribution functions agree well with the data when corrected for the effect of soft rescattering between the spectator partons.

3 data tables

Differential cross section as a function of $t$ for single-diffractive dijet production, in the kinematic region $\xi < 0.1$, $0.03 < \lvert t \rvert < 1\,\mathrm{GeV}^2$, with at least two jets with transverse momentum $p_{\mathrm{T}} > 40\,\mathrm{GeV}$, and pseudorapidity $\lvert \eta \rvert < 4.4$.

Differential cross section as a function of $\xi$ for single-diffractive dijet production, in the kinematic region $\xi < 0.1$, $0.03 < \lvert t \rvert < 1\,\mathrm{GeV}^2$, with at least two jets with transverse momentum $p_{\mathrm{T}} > 40\,\mathrm{GeV}$, and pseudorapidity $\lvert \eta \rvert < 4.4$.

Ratio per unit of $\xi$ of the single-diffractive and inclusive dijet cross sections in the region given by $\xi < 0.1$ and $0.03 < \lvert t \rvert < 1\,\mathrm{GeV}^2$, with at least two jets with transverse momentum $p_{\mathrm{T}} > 40\,\mathrm{GeV}$, and pseudorapidity $\lvert \eta \rvert < 4.4$.


Measurement of the flavour composition of dijet events in pp collisions at sqrt{s}=7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Eur.Phys.J.C 73 (2013) 2301, 2013.
Inspire Record 1188891 DOI 10.17182/hepdata.68119

This paper describes a measurement of the flavour composition of dijet events produced in pp collisions at sqrt{s}=7 TeV using the ATLAS detector. The measurement uses the full 2010 data sample, corresponding to an integrated luminosity of 39 pb^-1. Six possible combinations of light, charm and bottom jets are identified in the dijet events, where the jet flavour is defined by the presence of bottom, charm or solely light flavour hadrons in the jet. Kinematic variables, based on the properties of displaced decay vertices and optimised for jet flavour identification, are used in a multidimensional template fit to measure the fractions of these dijet flavour states as functions of the leading jet transverse momentum in the range 40 GeV to 500 GeV and jet rapidity |y| < 2.1. The fit results agree with the predictions of leading- and next-to-leading-order calculations, with the exception of the dijet fraction composed of bottom and light flavour jets, which is underestimated by all models at large transverse jet momenta. The ability to identify jets containing two b-hadrons, originating from e.g. gluon splitting, is demonstrated. The difference between bottom jet production rates in leading and subleading jets is consistent with the next-to-leading-order predictions.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the triple-differential dijet cross section in proton-proton collisions at sqrt(s) = 8 TeV and constraints on parton distribution functions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 77 (2017) 746, 2017.
Inspire Record 1598460 DOI 10.17182/hepdata.79410

A measurement is presented of the triple-differential dijet cross section at a centre-of-mass energy of 8 TeV using 19.7 inverse femtobarns of data collected with the CMS detector in proton-proton collisions at the LHC. The cross section is measured as a function of the average transverse momentum, half the rapidity separation, and the boost of the two leading jets in the event. The cross section is corrected for detector effects and compared to calculations in perturbative quantum chromodynamics at next-to-leading order accuracy, complemented with electroweak and nonperturbative corrections. New constraints on parton distribution functions are obtained and the inferred value of the strong coupling constant is alpha[S](M[Z]) = 0.1199 +/- 0.0015 (exp) -0.0020 +0.0031 (theo), where M[Z] is the mass of the Z boson.

24 data tables

Triple-differential dijet cross section as a function of the average transverse momentum of the leading two jets with detailed experimental uncertainties (symmetrised).

Statistical correlation matrix from unfolding

Triple-differential dijet cross section as a function of the average transverse momentum of the leading two jets with detailed experimental uncertainties (symmetrised).

More…