Hidden Strangeness in the Proton? Determination of the Real Part of the Isospin Even - Forward Scattering Amplitude of Pion Nucleon Scattering at 54.3-{MeV}

Wiedner, U. ; Goring, K. ; Jaki, J. ; et al.
Phys.Rev.D 40 (1989) 3568-3581, 1989.
Inspire Record 287810 DOI 10.17182/hepdata.23079

The contradiction of the σ term of pion-nucleon scattering as deduced from the Karlsruhe-Helsinki phase shifts with the smaller value calculated by the chiral perturbation theory of QCD is well known. In an effort to clarify the discrepancy we have determined the real part of the isospin-even forward-scattering amplitude of pion-nucleon scattering at a pion energy Tπ=54.3 MeV by measurement of the elastic scattering of positive and negative pions on protons in the Coulomb-nuclear interference region. The deduced value is in agreement with the prediction of the Karlsruhe-Helsinki phase-shift analysis for that energy. The resulting large value of the σ term may be interpreted as being due to the influence of s¯s sea pairs even at large distances (small Q2) as previously suggested by the European Muon Collaboration measurement of deep-inelastic scattering of polarized muons on polarized protons.

1 data table

No description provided.


Proton Compton Effect for 300-MeV Photons

Gray, E.R. ; Hanson, A.O. ;
Phys.Rev. 160 (1967) 1212-1215, 1967.
Inspire Record 944949 DOI 10.17182/hepdata.26568

The scattering of photons by protons has been measured with a spark-chamber technique using 335-MeV bremsstrahlung. The experimental values obtained at 90° and 135° are compared with those calculated by Contogouris using dispersion relations. The agreement is reasonable except for a persistently low point for 310 MeV at 90°.

3 data tables

No description provided.

No description provided.

No description provided.