Compton scattering cross section on the proton at high momentum transfer.

The Hall A collaboration Danagoulian, A. ; Mamyan, V.H. ; Roedelbronn, M. ; et al.
Phys.Rev.Lett. 98 (2007) 152001, 2007.
Inspire Record 743383 DOI 10.17182/hepdata.31472

Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s = 5-11 and -t = 2-7 GeV2 with statistical accuracy of a few percent. The scaling power for the s-dependence of the cross section at fixed center of mass angle was found to be 8.0 +/ 0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross-section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark.

4 data tables

Cross section of proton Compton Scattering at centre of mass energy squared of 4.82 GeV.

Cross section of proton Compton Scattering at centre of mass energy squared of 6.79 GeV.

Cross section of proton Compton Scattering at centre of mass energy squared of 8.90 GeV.

More…

Measurements of electron proton elastic cross sections for 0.4-(GeV/c)**2 < Q**2 < 5.5-(GeV/c)**2.

The E94110 collaboration Christy, M.E. ; Ahmidouch, A. ; Armstrong, C.S. ; et al.
Phys.Rev.C 70 (2004) 015206, 2004.
Inspire Record 643262 DOI 10.17182/hepdata.31763

We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 $<$ $Q^2$ $<$ 5.5 $(\rm GeV/c)^2$. These measurements represent a significant contribution to the world's cross section data set in the $Q^2$ range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab.

7 data tables

Measured values of the electron-proton elastic cross section for beam energy 1.148 GeV.

Measured values of the electron-proton elastic cross section for beam energy 1.882 GeV.

Measured values of the electron-proton elastic cross section for beam energy 2.235 GeV.

More…

Excitation functions of the analyzing power in p p(pol.) scattering from 0.45-GeV to 2.5-GeV

The EDDA collaboration Altmeier, M. ; Bauer, F. ; Bisplinghoff, J. ; et al.
Phys.Rev.Lett. 85 (2000) 1819-1822, 2000.
Inspire Record 537773 DOI 10.17182/hepdata.19490

Excitation functions AN(pp,Θc.m.) of the analyzing power in pp→ elastic scattering have been measured with a polarized atomic hydrogen target for projectile momenta pp between 1000 and 3300 MeV/ c. The experiment was performed for scattering angles 30°≤Θc.m.≤90° using the recirculating beam of the proton storage ring COSY during acceleration. The resulting excitation functions and angular distributions of high internal consistency have significant impact on the recent phase shift solution SAID SP99, in particular, on the spin triplet phase shifts between 1000 and 1800 MeV, and demonstrate the limited predictive power of single-energy phase shift solutions at these energies.

26 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of spin observables in neutron proton elastic scattering. I: Correlation parameters

Arnold, J. ; van den Brandt, B. ; Daum, M. ; et al.
Eur.Phys.J.C 17 (2000) 67-81, 2000.
Inspire Record 537914 DOI 10.17182/hepdata.43392

The spin correlation parameters$A_{oonn}, A_{ooss}, A_{oosk}, A_{ookk}$and the analyzing power$A_{oono}$have been measured i

6 data tables

Values of the coefficients for the linear combinations of the spin correlation parameters Cpq measurements for the four different beam and target polarisation orientations. For the (z,z) and (y,y) configurations the coefficients are identical for all incident kinetic energies.

Measurement of the analysing power. Statistical errors only are shown. For the systematic errors see the systematics section above. Note that there are two overlapping angular settings.

Measurements of the spin correlation parameter CNN. Statistical errors onlyare shown. For the systematics see the systematic section above. Note the two overlapping angular settings.

More…

Measurement of spin observables in neutron proton elastic scattering. II: Rescattering parameters

Arnold, J. ; van den Brandt, B. ; Daum, M. ; et al.
Eur.Phys.J.C 17 (2000) 83-95, 2000.
Inspire Record 537915 DOI 10.17182/hepdata.43295

A double scattering experiment, performed at the Paul-Scherrer-Institut (PSI), has measured a large variety of spin observables for free np elastic scattering from 260 to 535 MeV in the c.m. angle ran

12 data tables

Relative uncertainties on the carbon polarimeter analysing power (AC).

Relative uncertainty in the beam polarisation (PB).

Measurements of DNN with statistical errors only.

More…

Measurements of the electric and magnetic form-factors of the neutron from Q**2 = 1.75-GeV/c**2 to 4-GeV/c**2

Lung, A. ; Stuart, L.M. ; Bosted, Peter E. ; et al.
Phys.Rev.Lett. 70 (1993) 718-721, 1993.
Inspire Record 342252 DOI 10.17182/hepdata.19739

Quasielastic e-d cross sections have been measured at forward and backward angles. Rosenbluth separations were done to obtain RL and RT at Q2=1.75, 2.50, 3.25, and 4.00 (GeV/c)2. The neutron form factors GEn and GMn have been extracted using a nonrelativistic model. The sensitivity to deuteron wave function, relativistic corrections, and models of the inelastic background are reported. The results for GMn are consistent with the dipole form, while GEn is consistent with zero. Comparisons are made to theoretical models based on vector meson dominance, perturbative QCD, and QCD sum rules, as well as constituent quarks.

2 data tables

Magnetic form factors.

Electric form factors.


Measurements of the electric and magnetic form-factors of the proton from Q**2 = 1.75-GeV/c**2 to 8.83-GeV/c**2

Bosted, Peter E. ; Clogher, L. ; Lung, A. ; et al.
Phys.Rev.Lett. 68 (1992) 3841-3844, 1992.
Inspire Record 332962 DOI 10.17182/hepdata.19849

The proton elastic electric and magnetic form factors, GEp(Q2) and GMp(Q2), have been separately measured in the range Q2=1.75 to 8.83 (GeV/c)2, more than doubling the Q2 range of previous data. Scaled by the dipole fit, GD(Q2), the results for GMp(Q2)/μpGD(Q2) decrease smoothly from 1.05 to 0.91, while GEp(Q2)/GD(Q2) is consistent with unity. Comparisons are made to QCD sum rule, diquark, constitutent quark, and vector meson dominance models, none of which agree with all of the new data. The ratio Q2F2/F1 approaches a constant value for Q2>3 (GeV/c)2.

2 data tables

Magnetic form factors.

Electric form factors.


Energy dependence of the neutron proton total cross-section differences Delta (sigma-T) and Delta (sigma-L) between 0.31-GeV and 1.1-GeV

Fontaine, J.M. ; Kunne, F. ; Bystricky, J. ; et al.
Nucl.Phys.B 358 (1991) 297-310, 1991.
Inspire Record 320446 DOI 10.17182/hepdata.33013

Final results for total cross section differences Δσ T and Δσ L measured with a polarized neutron beam transmitted through a polarized proton target are presented. Measurements were carried out at SATURNE II, at 11 energies between 0.63 and 1.1 GeV for Δσ T and at 9 energies between 0.312 and 1.1 GeV for Δσ L . The results are compared with measurements at PSI and LAMPF as well as with Δσ L data points deduced from p-d and p-p transmission experiments at the ANL-ZGS. The present results together with the corresponding pp data allow to determine two of the three imaginary parts of forward scattering amplitudes for isospin I = 0.

4 data tables

Measurements of the tranverse cross section differences.

Measurements of the tranverse cross section differences.

Measurement of the longitudinal cross section difference.

More…

Measurement of Neutrino - Proton and anti-neutrino - Proton Elastic Scattering

Ahrens, L.A. ; Aronson, S.H. ; Connolly, P.L. ; et al.
Phys.Rev.D 35 (1987) 785, 1987.
Inspire Record 18763 DOI 10.17182/hepdata.23350

Measurements of the semileptonic weak-neutral-current reactions νμp→νμp and ν¯μp→ν¯μp are presented. The experiment was performed using a 170-metric-ton high-resolution target detector in the BNL wide-band neutrino beam. High-statistics samples yield the absolute differential cross sections dσ(νμp)/dQ2 and dσ(ν¯μp)/dQ2. A measurement of the axial-vector form factor GA(Q2) is also presented. The results are in good agreement with the standard model SU(2)×U(1). The weak-neutral-current parameter sin2thetaW is determined to be sin2θW=0.220±0.016(stat)−0.031+0.023(syst).

1 data table

Errors contain both statistics and systematics, except for additional overall normalisation error given above. Neutrino energy is 0 to 5 GeV with peak at 0.8 Gev.


EXPERIMENTAL ANALYSIS OF ANTI-P P INTERACTIONS BETWEEN 0-GEV AND 1.2-GEV/C: EVIDENCE FOR A ANTI-P P ---> 5 PI EFFECT NEAR 1950-MEV/C**2

Defoix, C. ; Dobrzynski, L. ; Espigat, P. ; et al.
Nucl.Phys.B 162 (1980) 12-40, 1980.
Inspire Record 157036 DOI 10.17182/hepdata.34609

An experimental analysis of p p interactions between the p p threshold (√ s = 1878 MeV) and √ s = 2 100 MeV leads to clear evidence for an s -channel effect in the reaction p p → π + π − π + π − π 0 at 1949 ± 10 MeV /c 2 (Γ ⋍ 80 MeV /c 2 ) . A comparison is made with the backward elastic scattering and charge-exchange behaviour. An interpretation in terms of an object strongly coupled to mesonic decay modes, with small or middle-sized elasticity ( x ⩽ 0.135 −0.06 +0.13 ) is given. No significant narrow structure is observed in the backward elastic scattering between 1.9 and 2 GeV. The experimental resolution of √ s in this case is 2 MeV.

1 data table

LOWER MOMENTUM RESULTS WERE REPORTED IN CH. D'ANDLAU ET AL., PL 58B, 223 (1975). TABULATED NUMERICAL VALUES OF DATA ON FIGURES SUPPLIED BY M. LALOUM.