Nuclear Cross Sections for 1.4-Bev Neutrons

Coor, T. ; Hill, D.A. ; Hornyak, W.F. ; et al.
Phys.Rev. 98 (1955) 1369-1386, 1955.
Inspire Record 46644 DOI 10.17182/hepdata.248

Transmission measurements in good and poor geometry have been performed at the Brookhaven Cosmotron to measure the total and absorption cross sections of several nuclei for neutrons in the Bev energy range. The neutrons are produced by bombarding a Be target with 2.2-Bev protons. The neutron detector requires the incident particle to pass an anticoincidence counter and produce in an aluminum radiator a charged particle that will traverse a fourfold scintillation telescope containing 6 in. of lead. Contribution of neutrons below 800 Mev are believed small. The angular distribution of neutrons from the target is sharply peaked forward with a half-width of 6°. The integral angular distributions of diffraction scattered neutrons from C, Cu, and Pb are measured by varying the detector geometry. The angular half-width of these distributions indicates a mean effective neutron energy of 1.4±0.2 Bev. The total cross sections σH and σD−σH are measured by attenuation differences in good geometry of CH2-C and D2O-H2O, with the result: σH=42.4±1.8 mb, σD−σH=42.2±1.8 mb. The cross sections of eight elements from Be to U are measured in good and poor geometry, and the following values of the total and absorption cross sections are deduced (in units of millibrans): Experimental errors are about 3 percent in σtotal and 5 percent in σabsorption. An interpretation of these cross sections is given in terms of optical model parameters for two extreme nuclear density distributions: uniform (radius R) and Gaussian [ρ=ρ0exp−(ra)2]. The absorption cross-section data are well fitted with R=1.28A13 or a=0.32+0.62A13 in units of 10−13 cm. A nuclear density distribution intermediate between uniform and Gaussian will make the present results consistent with the recent electromagnetic radii.

2 data tables

'ALL'.

No description provided.


Total p-p and 'p-n' Cross Sections at Cosmotron Energies

Chen, Francis F. ; Leavitt, Christopher P. ; Shapiro, Anatole M. ;
Phys.Rev. 103 (1956) 211-225, 1956.
Inspire Record 46809 DOI 10.17182/hepdata.828

The total proton-proton cross section (excluding Coulomb scattering) has been measured at energies from 410 Mev up to 2.6 Bev, using external beams from the Cosmotron. Fast counting equipment was used to measure the attenuation of the beams through polyethylene, carbon, and liquid H2 absorbers. At each energy E, σp−p(E, Ω) was measured as a function of the solid angle Ω subtended by the rear counter at the center of the absorber. The total cross section σp−p was obtained by a least squares straight line extrapolation to Ω=0. The measured σp−p as a function of energy rises sharply from 26.5 mb at 410 Mev to 47.8 mb at 830 Mev and then remains approximately constant out to 1.4 Bev, above which energy it decreases gradually to about 42 mb at 2.6 Bev. Using the same equipment and procedure, we have also measured the D2O-H2O difference cross section, called "σp−n," for protons over the same energy range. From a comparison of "σp−n," and σp−p, with the n−p and n−d measurements of Coor et al. at 1.4 Bev, it is apparent that one nucleon is "shielded" by the other in the deuteron. This effect is not present at energies below 410 Mev. Comparing the measured p−p and "p−n" (corrected) cross sections with the results of other high-energy experiments, one may infer the following conclusions: (1) The sharp rise in σp−p from 400 to 800 Mev results from increasing single pion production, which may proceed through the T=32, J=32 excited nucleon state. (2) Above 1 Bev the inelastic (meson production) p−p cross section appears to be approximately saturated at 27-29 mb. (3) The rise in cross section for n−p interaction in the T=0 state, associated with the rise in double pion production, implies that double meson production also proceeds through the T=32 nucleon state. (4) The probable equality of σp−d and σn−d at 1.4 Bev implies the validity of charge symmetry at this energy.

4 data tables

No description provided.

No description provided.

More…

Antiproton-Proton Cross Sections at 1.0, 1.25, and 2.0 Bev

Armenteros, Rafael ; Coombes, Charles A. ; Cork, Bruce ; et al.
Phys.Rev. 119 (1960) 2068-2073, 1960.
Inspire Record 46744 DOI 10.17182/hepdata.813

The interaction of 1.0-, 1.25-, and 2.0-Bev antiprotons with protons has been studied with the aid of a 4π solid-angle scintillation-counter detector system. The measured total cross sections at the above energies are 100, 89, and 80 mb, respectively. At each energy, the charge-exchange cross section is approximately 5 mb. The total elastic cross sections are 33, 28, and 25 mb, respectively, at the three energies. The angular distribution of elastic scattering has been fitted with a simple optical-model calculation.

3 data tables

No description provided.

No description provided.

No description provided.


Production of Pion Resonances in pi+ p Interactions.

Alff-Steinberger, C. ; Berley, D. ; Colley, D. ;
Phys.Rev.Lett. 9 (1962) 322, 1962.
Inspire Record 48453 DOI 10.17182/hepdata.19352

None

1 data table

No description provided.


Nucleon and Nuclear Cross Sections for Positive Pions and Protons above 1.4 Bev/c

Longo, Michael J. ; Moyer, Burton J. ;
Phys.Rev. 125 (1962) 701-713, 1962.
Inspire Record 46829 DOI 10.17182/hepdata.26791

Total (π+, p) and (p, p) cross sections in the momentum range 1.4 to 4.0 Bev/c are presented. These measurements, with an accuracy of approximately 2%, were made at the Berkeley Bevatron by using counter techniques. Pions were distinguished from protons by means of a gas-filled Čerenkov counter. The (π+, p) total cross section was found to be almost constant above 2.0 Bev/c at a value near 29 mb. The (p, p) cross section decreases gradually from 47.5 mb to 41.7 mb over the momentum range covered. Transmission measurements of π+-nucleus and p-nucleus cross sections in both good and poor geometry were made at 3.0 Bev/c. The results are compared with the predictions of the optical model. In contrast to most previous work at high energies, an essentially exact solution of the wave equation for a potential well with a diffuse edge was used. The values of the imaginary part of the optical potential that best fit the experimental data are in good agreement with the predicted values. No strong conclusion regarding the real part of the potential was possible. Absorption and total elastic scattering cross sections for Be, C, Al, and Cu are presented. The total elastic scattering cross sections from this experiment disagree with Wikner's for π−-nucleus scattering.

1 data table

No description provided.


Elastic Proton-Proton Scattering at 1.35, 2.1, and 2.9 BeV

Fujii, T. ; Chadwick, G.B. ; Collins, G.B. ; et al.
Phys.Rev. 128 (1962) 1836-1841, 1962.
Inspire Record 944980 DOI 10.17182/hepdata.624

As a part of our program to study p−p collisions at Cosmotron energies, the differential cross sections for elastic scattering were measured at five laboratory angles between 2.3° and 17° for each incident energy. Total elastic cross sections obtained by integration are 21.4±1.4, 17.0±0.8, and 14.7±0.7 mb at 1.35, 2.1, and 2.9 BeV, respectively. The angular distribution as a function of the momentum transfer, exhibits a forward diffraction peak, the width of which shrinks slightly as the incident energy increases. The experimental results were fitted by simple optical model calculations and also compared with the predictions of the composite particle theory of Chew and Frautschi.

4 data tables

No description provided.

More…

Electron-Proton Scattering at High Momentum Transfers

Chen, K.W. ; Cone, A.A. ; Dunning, J.R. ; et al.
Phys.Rev.Lett. 11 (1963) 561-564, 1963.
Inspire Record 945163 DOI 10.17182/hepdata.21832

None

4 data tables

No description provided.

No description provided.

No description provided.

More…

Photoproduction of pi Mesons between 0.9 and 4.0 BeV

Alvarez, R. ; Bar-Yam, Z. ; Kern, W. ; et al.
Phys.Rev.Lett. 12 (1964) 707-710, 1964.
Inspire Record 944926 DOI 10.17182/hepdata.21825

None

1 data table

No description provided.


Nonstrange Resonance Production in pi+ p Collisions at 2.35, 2.62, and 2.90 GeV/c

Alff-Steinberger, C. ; Berley, D. ;
Phys.Rev. 145 (1966) 1072, 1966.
Inspire Record 50938 DOI 10.17182/hepdata.26629

In an exposure of the Brookhaven National Laboratory 20-in. hydrogen bubble chamber to a separated π+ beam at π+ momenta of 2.35 BeV/c (center-of-mass energy E*=2.30 BeV), 2.62 BeV/c (E*=2.41 BeV), and 2.90 BeV/c (E*=2.52 BeV), we have observed production of the ω0, ρ0, and η0 mesons. The production of the ω0, ρ0, and η0 is often accompanied by simultaneous production of the N*++. The momentum transfer in ω0 and ρ0 production is characteristic of peripheral collisions and suggests a single-particle exchange for the production mechanism. The decay distributions for the ω0, ρ0, and the ρ+ demonstrate the importance of modifying the single-particle-exchange model to include absorptive effects. An upper limit on the two-π decay of the ω0 is set at 2%. The width of the η0 is found to be less than 10 MeV. Elastic-scattering distributions are presented.

1 data table

No description provided.


$\pi^+ p$ Elastic Scatterings at 2.35 and 2.90 BeV/c

Kramer, Paul R. ; Plano, Richard J. ;
PhD Thesis, Rutgers U., Piscataway, 1966.
Inspire Record 1407272 DOI 10.17182/hepdata.69629

None

3 data tables

No description provided.

No description provided.

No description provided.