Photoproduction of pi Mesons between 0.9 and 4.0 BeV

Alvarez, R. ; Bar-Yam, Z. ; Kern, W. ; et al.
Phys.Rev.Lett. 12 (1964) 707-710, 1964.
Inspire Record 944926 DOI 10.17182/hepdata.21825

None

1 data table

No description provided.


Photoproduction of $\pi^0$ in the Backward Direction

Buschhorn, G. ; Heide, P. ; Kotz, U. ; et al.
Phys.Rev.Lett. 20 (1968) 230-232, 1968.
Inspire Record 54459 DOI 10.17182/hepdata.21735

None

1 data table

No description provided.


Photoproduction of positive pions at backward angles in the energy range 1-3 gev

Alvarez, R.A. ; Cooperstein, G. ; Kalata, K. ; et al.
Phys.Rev.D 1 (1970) 1946-1960, 1970.
Inspire Record 61718 DOI 10.17182/hepdata.25170

The cross section for photoproduction of single π+ from hydrogen has been measured at laboratory angles of 110°, 127.5° and 152°, between 0.9- and 3.2-GeV incident photon energy. Measurements have been made with approximately 15% statistical accuracy at about 40 photon energies at each angle. The results agree well with the previous Caltech data of Thiessen. The cross section shows a rapid drop with increasing energy with superimposed bumps or shoulders corresponding to the N(1688), Δ(1920), and Δ(2420). A shallow minimum is observed at the N(2190) resonance.

1 data table

No description provided.


Photoproduction of positive pions at 180 degrees from 0.22 to 3.1 gev

Bouquet, B. ; D' Almagne, B. ; Eschstruth, P.T. ; et al.
Phys.Rev.Lett. 27 (1971) 1244-1247, 1971.
Inspire Record 68896 DOI 10.17182/hepdata.21483

The π+ photoproduction cross section in hydrogen has been measured at 180° for photon energies from 0.22 to 3.1 GeV by detecting the pion in the backward direction. The statistical accuracy of the measurements varies typically from 3 to 10% depending on the energy. The data are compared with other recent experimental results and predictions of phenomenological theories.

1 data table

No description provided.


Coincidence measurements of single pi+ electroproduction

Brown, C.N. ; Canizares, C.R. ; Cooper, W.E. ; et al.
Phys.Rev.Lett. 26 (1971) 987-991, 1971.
Inspire Record 69020 DOI 10.17182/hepdata.21506

We have studied the reaction e−+p→e−+π++n by detecting the final electron and pion in coincidence. Data are presented in the region of virtual photon mass squared from -0.18 to -1.2 GeV2, and virtual photoproduction center-of-mass energy and angle from 1.85 to 2.50 GeV and 0 to 20°, respectively.

12 data tables

No description provided.

No description provided.

No description provided.

More…

Proton Compton scattering between 2.2 and 7 gev

Buschhorn, G. ; Criegee, L. ; Franke, G. ; et al.
Phys.Lett.B 37 (1971) 207-210, 1971.
Inspire Record 69082 DOI 10.17182/hepdata.28376

Proton Compton scattering has been measured in a coincidence experiment at photon energies between 2.2 and 7 GeV and four-momentum transfers t between −0.06 and −0.85(GeV/ c ) 2 . For ∣ t ∣ ⩽ 0.4 (GeV/ c ) 2 fits of the form d σ /d t = ( A · exp( Bt )) yield forward cross sections A in good agreement with the values calculated from the total hadronic γ p cross section via the optical theorem and the forward dispersion relation. The slopes B do not show a significant energy dependence, the mean value being 5.7 ± 0.4 (GeV/ c ) −2 . The cross section is substantially larger than predicted by the vector-meson dominance model.

7 data tables

No description provided.

No description provided.

No description provided.

More…

Bubble Chamber Study of Photoproduction by 2.8-GeV and 4.7-GeV Polarized Photons. 1. Cross-Section Determinations and Production of rho0 and Delta++ in the Reaction gamma p --> p pi+ pi-

Ballam, Joseph ; Chadwick, G.B. ; Gearhart, R. ; et al.
Phys.Rev.D 5 (1972) 545, 1972.
Inspire Record 67165 DOI 10.17182/hepdata.3635

Photoproduction is studied at 2.8 and 4.7 GeV using a linearly polarized monoenergetic photon beam in a hydrogen bubble chamber. We discuss the experimental procedure, the determination of channel cross sections, and the analysis of the channel γp→pπ+π−. A model-independent analysis of the ρ0-decay angular distribution allows us to measure nine independent density-matrix elements. From these we find that the reaction γp→pρ0 proceeds almost completely through natural parity exchange for squared momentum transfers |t|<1 GeV2 and that the ρ production mechanism is consistent with s-channel c.m. helicity conservation for |t|<0.4 GeV2. A cross section for the production of π+π− pairs in the s-channel c.m. helicity-conserving p-wave state is determined. The ρ mass shape is studied as a function of momentum transfer and is found to be inconsistent with a t-independent Ross-Stodolsky factor. Using a t-dependent parametrization of the ρ0 mass shape we derive a phenomenological ρ0 cross section. We compare our phenomenological ρ0 cross section with other experiments and find good agreement for 0.05<|t|<1 GeV2. We discuss the discrepancies in the various determinations of the forward differential cross section. We study models for ρ0 photoproduction and find that the Söding model best describes the data. Using the Söding model we determine a ρ0 cross section. We determine cross sections and nine density-matrix elements for γp→Δ++π−. The parity asymmetry for Δ++ production is incompatible with simple one-pion exchange. We compare Δ++ production with models.

20 data tables

FROM QUOTED TOPOLOGICAL CROSS SECTIONS. 1.44 GEV CROSS SECTION PUBLISHED PREVIOUSLY.

No description provided.

NO TMIN CORRECTION HAS BEEN MADE.

More…

Total hadronic cross-section of gamma rays in hydrogen in the energy range 0.265-GeV to 4.215-GeV

Armstrong, T.A. ; Hogg, W.R. ; Lewis, G.M. ; et al.
Phys.Rev.D 5 (1972) 1640-1652, 1972.
Inspire Record 67298 DOI 10.17182/hepdata.22462

The total cross section of γ rays in hydrogen resulting in hadron production, σT, has been measured over the energy range 265-4215 MeV. A tagging system with narrow energy bins was employed. Structure in the resonance region followed by a steady fall with energy has been observed and the results are analyzed. The forward amplitude of γ-proton scattering is evaluated, and its behavior in the Argand diagram studied as a function of energy. The relationships of the measurements to Regge-pole theory and the vector-dominance model are detailed.

2 data tables

No description provided.

SPIN AVERAGED FORWARD COMPTON SCATTERING AMPLITUDE. IM(AMP) WAS CALCULATED VIA THE OPTICAL THEOREM FROM A SMOOTH FIT TO THE DATA, AND USED IN THE DISPERSION RELATION TO CALCULATE RE(AMP). AT THRESHOLD THE THOMSON AMPLITUDE IS -3.0 MUB*GEV.


Positive-pion photoproduction in the backward direction

Ekstrand, K. ; Browman, A. ; Hand, L. ; et al.
Phys.Rev.D 6 (1972) 1-11, 1972.
Inspire Record 74041 DOI 10.17182/hepdata.3606

The reaction γ+p→π++n has been measured for incident γ-ray energies from 0.7 to 8 GeV and recoil lab angles from 170° to 180° using the Cornell 10-GeV synchrotron. The data presented here cover the transition region between the resonance region and the high-energy region studied at SLAC. The results are compared with various phenomenological Regge-pole analyses and with similar data on π0 photoproduction taken at DESY.

2 data tables

No description provided.

No description provided.


The total pair production cross-section of gamma-rays in hydrogen and deuterium

Rawlinson, W.R. ; Tait, N.R.S. ; Thompson, J.C. ; et al.
Nucl.Phys.B 45 (1972) 41-46, 1972.
Inspire Record 75026 DOI 10.17182/hepdata.32781

The total electromagnetic cross sections of g-rays in hydrogen and deuterium have been measured over the energy range 265–4215 MeV using a photon tagging system. From these measurements, the total pair production cross sections are obtained, and the results are found to be in good agreement with the predictions of Jost, Luttinger and Slotnick.

2 data tables

Axis error includes +- 1/1 contribution.

Axis error includes +- 1/1 contribution.