Two-pion Bose-Einstein correlations in central PbPb collisions at sqrt(s_NN) = 2.76 TeV

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Lett.B 696 (2011) 328-337, 2011.
Inspire Record 881884 DOI 10.17182/hepdata.56743

The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.

14 data tables

Projections of the correlation function C.

Projections of the correlation function C.

Projections of the correlation function C.

More…

Inclusive J/psi production in pp collisions at sqrt(s) = 2.76 TeV

The ALICE collaboration Abelev, B. ; Adam, J. ; Adamova, D. ; et al.
Phys.Lett.B 718 (2012) 295-306, 2012.
Inspire Record 1094079 DOI 10.17182/hepdata.62231

The ALICE Collaboration has measured inclusive J/psi production in pp collisions at a center of mass energy sqrt(s)=2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges |y|<0.9 and 2.5<y<4 and have been obtained by measuring the electron and muon pair decay channels, respectively. The integrated luminosities for the two channels are L^e_int=1.1 nb^-1 and L^mu_int=19.9 nb^-1, and the corresponding signal statistics are N_J/psi^e+e-=59 +/- 14 and N_J/psi^mu+mu-=1364 +/- 53. We present dsigma_J/psi/dy for the two rapidity regions under study and, for the forward-y range, d^2sigma_J/psi/dydp_t in the transverse momentum domain 0<p_t<8 GeV/c. The results are compared with previously published results at sqrt(s)=7 TeV and with theoretical calculations.

4 data tables

Double differential J/$\psi$ production cross section at $\sqrt{s}=2.76$ TeV. The first uncertainty is statistical, the second one is $p_{\rm T}$-coorelated, the third one is uncorrelated. Polarization-related uncertainties are not included.

The $\sqrt{s}$-dependence of $\langle p_{\rm T}\rangle$ for inclusive J/$\psi$ production (forward rapidity).

the $\sqrt{s}$-dependence of $\langle p_{\rm T}\rangle$ for inclusive J/$\psi$ production (forward rapidity).

More…

Two Photon Production of Final States With a $p \bar{p}$ Pair

The ARGUS collaboration Albrecht, H. ; Bockmann, P. ; Glaser, R. ; et al.
Z.Phys.C 42 (1989) 543, 1989.
Inspire Record 267759 DOI 10.17182/hepdata.15473

Two-photon production of the exclusive final statesp\(\bar p\)+nπ (n=0, 1, 2, and 3) has been investigated using the ARGUS detector at thee+e− storage ring DORIS II at DESY. The reactionsγγ→p\(\bar p\)π andγγ→p\(\bar p\)π+π−π0 have been observed for the first time, as have theΔ++ and\(\overline {\Delta ^{ ++ } } \) baryons in the final statep\(\bar p\)π+π−. No evidence was found forΔ++\(\overline {\Delta ^{ ++ } } \) production. Topological cross sections for two-photon production ofp\(\bar p\),p\(\bar p\)π0,p\(\bar p\)π+π− andp\(\bar p\)π+π−π0, as well as the crosssection forγγ→Δ++\(\bar p\)π+π−+c.c., have been measured. Upper limits are given for the cross section forγγ→Δ0\(\overline {\Delta ^0 } \),γγ→Δ++\(\overline {\Delta ^{ ++ } } \) andγγ→Λ\(\bar \Lambda \).

7 data tables

Data read from graph.. Additional overall systematic error 13% not included.

Data read from graph.. Additional overall systematic error 13% not included.

Data read from graph.. Additional overall systematic error 13% not included.

More…

Total Cross-section for Neutrino Charged Current Interactions at 3-{GeV} and 9-{GeV}

The Gargamelle Neutrino Propane & Aachen-Brussels-CERN-Ecole Poly-Orsay-Padua collaborations Ciampolillo, S. ; Degrange, B. ; Dewit, M. ; et al.
Phys.Lett.B 84 (1979) 281-284, 1979.
Inspire Record 141175 DOI 10.17182/hepdata.27322

Average total cross sections are given for neutrino charged current interactions at neutrino energies of 2.87 GeV and 9.05 GeV. The ratios 〈σ〉 〈E〉 are 0.69 ± 0.05 and 0.61 ± 0.06 in units of 10 −38 cm 2 /GeV nucleon, respectively The errors include both statistical and systematic uncertainties.

2 data tables

Measured charged current total cross section.

Measured charged current total cross section.


Measurement of the cross section for e+ e- --> p anti-p at center-of-mass energies from 2.0-GeV to 3.07-GeV.

The BES collaboration Ablikim, M. ; Bai, J.Z. ; Ban, Y. ; et al.
Phys.Lett.B 630 (2005) 14-20, 2005.
Inspire Record 685906 DOI 10.17182/hepdata.41880

Cross sections for e^+e^- -> ppbar have been measured at 10 center-of-mass energies from 2.0 to 3.07 GeV by the BESII experiment at the BEPC, and proton electromagnetic form factors in the time-like region have been determined.

1 data table

Cross section and proton form factor measurements. The cross section quoted is the lowest order cross section corrected for initial and final state radiation and coulomb effects.


Measurements of the Cross Section for e+e- -> hadrons at Center-of-Mass Energies from 2 to 5 GeV

The BES collaboration Bai, J.Z. ; Ban, Y. ; Bian, J.G. ; et al.
Phys.Rev.Lett. 88 (2002) 101802, 2002.
Inspire Record 552757 DOI 10.17182/hepdata.41990

We report values of $R = \sigma(e^+e^-\to {hadrons})/\sigma(e^+e^-\to\mu^+\mu^-)$ for 85 center-of-mass energies between 2 and 5 GeV measured with the upgraded Beijing Spectrometer at the Beijing Electron-Positron Collider.

1 data table

Measured values of R.


Measurement of the Total Cross Section for Hadronic Production by e+e- Annihilation at Energies between 2.6-5 Gev

The BES collaboration Bai, J.Z. ; Ban, Y. ; Bian, J.G. ; et al.
Phys.Rev.Lett. 84 (2000) 594-597, 2000.
Inspire Record 505323 DOI 10.17182/hepdata.41611

Using the upgraded Beijing Spectrometer (BESII), we have measured the total cross section for $e^+e^-$ annihilation into hadronic final states at center-of-mass energies of 2.6, 3.2, 3.4, 3.55, 4.6 and 5.0 GeV. Values of $R$, $\sigma(e^+e^-\to {hadrons})/\sigma(e^+e^-\to\mu^+\mu^-)$, are determined.

1 data table

Data are corrected for acceptance and radiative effects.


$R$ value measurements for $e^+e^-$ annihilation at 2.60, 3.07 and 3.65 GeV

The BES collaboration Ablikim, M. ; Bai, J.Z. ; Bai, Y. ; et al.
Phys.Lett.B 677 (2009) 239-245, 2009.
Inspire Record 814778 DOI 10.17182/hepdata.51953

Using a data sample with a total integrated luminosity of 10.0 pb$^{-1}$ collected at center-of-mass energies of 2.6, 3.07 and 3.65 GeV with BESII, cross sections for $e^+e^-$ annihilation into hadronic final states ($R$ values) are measured with statistical errors that are smaller than 1%, and systematic errors that are about 3.5%. The running strong interaction coupling constants $\alpha_s^{(3)}(s)$ and $\alpha_s^{(5)}(M_Z^2)$ are determined from the $R$ values.

1 data table

R values.


Measurement of the proton form factor by studying $e^{+} e^{-}\rightarrow p\bar{p}$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.D 91 (2015) 112004, 2015.
Inspire Record 1358937 DOI 10.17182/hepdata.73442

Using data samples collected with the BESIII detector at the BEPCII collider, we measure the Born cross section of $e^{+}e^{-}\rightarrow p\bar{p}$ at 12 center-of-mass energies from 2232.4 to 3671.0 MeV. The corresponding effective electromagnetic form factor of the proton is deduced under the assumption that the electric and magnetic form factors are equal $(|G_{E}|= |G_{M}|)$. In addition, the ratio of electric to magnetic form factors, $|G_{E}/G_{M}|$, and $|G_{M}|$ are extracted by fitting the polar angle distribution of the proton for the data samples with larger statistics, namely at $\sqrt{s}=$ 2232.4 and 2400.0 MeV and a combined sample at $\sqrt{s}$ = 3050.0, 3060.0 and 3080.0 MeV, respectively. The measured cross sections are in agreement with recent results from BaBar, improving the overall uncertainty by about 30\%. The $|G_{E}/G_{M}|$ ratios are close to unity and consistent with BaBar results in the same $q^{2}$ region, which indicates the data are consistent with the assumption that $|G_{E}|=|G_{M}|$ within uncertainties.

1 data table

Summary of the Born cross section $\sigma_\text{Born}$, the effective FF $|G|$, and the related variables used to calculate the Born cross sections at the different c.m.energies $\sqrt{s}$, where $N_\text{obs}$ is the number of candidate events, $N_\text{bkg}$ is the estimated background yield, $\varepsilon^\prime=\varepsilon\times(1+\delta)$ is the product of detection efficiency $\varepsilon$ and the radiative correction factor $(1+\delta)$, and $L$ is the integrated luminosity. The first errors are statistical, and the second systematic.


The e+ e- ---> 3(pi+ pi-), 2(pi+ pi- pi0) and K+ K- 2(pi+ pi-) cross sections at center-of-mass energies from production threshold to 4.5-GeV measured with initial-state radiation

The BaBar collaboration Aubert, Bernard ; Barate, R. ; Boutigny, D. ; et al.
Phys.Rev.D 73 (2006) 052003, 2006.
Inspire Record 709730 DOI 10.17182/hepdata.41843

We study the processes e+ e- --> 3(pi+pi-)gamma, 2(pi+pi-pi0)gamma and K+ K- 2(pi+pi-)gamma, with the photon radiated from the initial state. About 20,000, 33,000 and 4,000 fully reconstructed events, respectively, have been selected from 232 fb-1 of BaBar data. The invariant mass of the hadronic final state defines the effective e+e- center-of-mass energy, so that these data can be compared with the corresponding direct e+e- measurements. From the 3(pi+pi-), 2(pi+pi-pi0) and K+ K- 2(pi+pi-) mass spectra, the cross sections for the processes e+ e- --> 3(pi+pi-), e+ e- --> 2(pi+pi-pi0) and e+ e- --> K+ K- 2(pi+pi-) are measured for center-of-mass energies from production threshold to 4.5 GeV. The uncertainty in the cross section measurement is typically 6-15%. We observe the J/psi in all these final states and measure the corresponding branching fractions.

3 data tables

The cross section for E+ E- --> 3PI+ 3PI- as measured with the ISR data. Errors are statistical only.

The cross section for E+ E- --> 2PI+ 2PI- 2PI0 as measured with the ISR data. Errors are statistical only.

The cross section for E+ E- --> K+ K- 2PI+ 2PI- as measured with the ISR data. Errors are statistical only.