Summary data on elastic $pp$ and $pd$ scattering at small angles and the real part of the $pn$-scattering amplitude in the energy interval 1-10 BeV

Dalkhazhav, N. ; Devinski, P.A. ; Zayachki, V.I. ; et al.
Sov.J.Nucl.Phys. 8 (1969) 196-202, 1969.
Inspire Record 1392874 DOI 10.17182/hepdata.69719

None

32 data tables

RE/IM MEASUREMENTS TAKEN FROM TABLE 1 OF KIRILLOVA 65.

TABLE 1 (REF. 1 ).

RE/IM MEASUREMENTS TAKEN FROM TABLE 1 OF KIRILLOVA 65.

More…

Analysing power for quasi-elastic pp scattering in carbon and for elastic pp scattering on free protons

Bystricky, J. ; Deregel, J. ; Lehar, F. ; et al.
Lett.Nuovo Cim. 40 (1984) 466-470, 1984.
Inspire Record 1388775 DOI 10.17182/hepdata.37297

The ratio of the analysing powers for quasi-elastic pp scattering in carbon and for elastic scattering on free protons was measured fromT = 0.52 to 2.8 GeV by scattering of the SATURNE II polarized proton beam on carbon and CH2. It was found to have a maximum at about 0.8 GeV. The energy dependence for quasielastic scattering on carbon had not been measured before above 1 GeV. The observed effect was not expected from simple models.

1 data table

No description provided.


MEASUREMENT OF THE TOTAL CROSS-SECTION DIFFERENCE DELTA (SIGMA-L) (P P IN THE ENERGY RANGE FROM 0.52-GEV TO 2.8-GEV

Bystricky, J. ; Chaumette, P. ; Deregel, J. ; et al.
Phys.Lett.B 142 (1984) 130-134, 1984.
Inspire Record 206656 DOI 10.17182/hepdata.30540

The total cross section difference Δα L (pp) for proton-proton scattering with beam and target polarized longitudinally parallel and antiparallel, respectively, has been measured using the polarized proton beam from SATURNE II and a frozen spin polarized proton target. The beam polarization was reversed from pulse to pulse, and at each energy Δα L was measured for both signs of target polarization. The data below 800 MeV confirm the previously observed structures. The cross section difference is found to change by 8.0 ± 0.5 mb between 520 MeV and 760 MeV. At the higher energies the results show no indication for similar structures or for a change of the sign of Δα L .

1 data table

ERRORS INCLUDE UNCERTAINTY IN THE BEAM POLARIZATION.


STRUCTURE OBSERVED IN THE SPIN SPIN CORRELATION PARAMETER C(LL) = (L, L, 0, 0) IN P P ELASTIC SCATTERING AROUND THETA (C.M.) = 90-DEGREES IN THE REGION P(LAB) = 2.5-GEV/C - 5.0-GEV/C

Auer, I.P. ; Chang-Fang, C. ; Colton, E. ; et al.
Phys.Rev.Lett. 48 (1982) 1150-1152, 1982.
Inspire Record 180637 DOI 10.17182/hepdata.20626

The spin-spin correlation parameter CLL=(L, L; 0, 0) has been measured for p−p elastic scattering around θc.m.=90° up to plab=5 GeV/c. An interesting energy dependence is observed in CLL and the results are interpreted by comparison with other available data.

1 data table

NUMERICAL VALUES OF DATA IN FIGURE SUPPLIED BY A. YOKOSAWA.


Energy Dependence of Spin Spin Forces in 90-degrees (Center-of-mass) Elastic $p p$ Scattering

Lin, A. ; O'Fallon, J.R. ; Ratner, L.G. ; et al.
Phys.Lett.B 74 (1978) 273-276, 1978.
Inspire Record 129169 DOI 10.17182/hepdata.27461

We measured d σ d t(90° cm ) for ↑+ p ↑→ p + p from 1.75 to 5.5 GeV/ c , using the Argonne zero-gradient synchrotron 70% polarized proton beam and a 70% polarized proton target. We found that the spin-spin correlation parameter. A nn , equals 60% at low energy, then drops sharply to about 10% near 3.5 GeV/ c , and remains constant up to 5.5 GeV/ c .

2 data tables

ANALYZING POWER. QUOTED ERRORS DUE TO 4.3 PCT POINT TO POINT RELATIVE ERROR.

THE SPIN-SPIN CORRELATION PARAMETER CNN IS NOW DENOTED BY ANN ACCORDING TO THE NEW ANN ARBOR CONVENTION.


A Measurement of the Energy Dependence of Elastic $\pi p$ and $p p$ Scattering at Large Angles

Jenkins, K.A. ; Price, L.E. ; Klem, R. ; et al.
Phys.Rev.Lett. 40 (1978) 425, 1978.
Inspire Record 6233 DOI 10.17182/hepdata.3359

We have measured π±p and pp elastic differential cross sections in the range |cosθc.m.|<0.35 for incident momenta from 2 to 9.7 GeV/c for π−p and pp and from 2 to 6.3 GeV/c for π+p. We find that the fixed-c.m.-angle πp differential cross sections cannot be described as simple functions of s. The data are compared to the energy and angular dependence predicted by the constituent model of Gunion, Brodsky, and Blankenbecler.

56 data tables

No description provided.

No description provided.

No description provided.

More…

Systematic study of pi+- p, k+- p, p p, and anti-p p forward elastic scattering from 3 to 6 gev/c

Ambats, I. ; Ayres, D.S. ; Diebold, R. ; et al.
Phys.Rev.D 9 (1974) 1179-1209, 1974.
Inspire Record 92992 DOI 10.17182/hepdata.3409

Measurements of π±p, K±p, pp, and p¯p elastic scattering are presented for incident momenta of 3, 3.65, 5, and 6 GeVc and momentum transfers typically 0.03 to 1.8 GeV2. The angle and momentum of the scattered particle were measured with the Argonne Effective Mass Spectrometer for 300 000 events, yielding 930 cross-section values with an uncertainty in absolute normalization of ±4%. Only the K+ and proton data show any significant change in slope of the forward diffraction peak with incident momentum. The particle-antiparticle crossover positions are consistent with no energy dependence, average values being 0.14 ± 0.03, 0.190 ± 0.006, and 0.162 ± 0.004 GeV2 for π' s, K' s, and protons, respectively; these errors reflect both statistics and the ±1.5% uncertainty in particle-antiparticle relative normalization. Differences between particle and antiparticle cross sections isolate interference terms between amplitudes of opposite C parity in the t channel; these differences indicate that the imaginary part of the odd-C nonflip-helicity amplitude has a J0(r(−t)12) structure for −t<0.8 GeV2, as predicted by strong absorption models. The cross-section differences for K± and proton-antiproton are in qualitative agreement with the predictions of ω universality, the agreement improving with increasing energy. The corresponding quark-model predictions relating the π± and K± differences failed by more than a factor of 2. We have combined our π± cross sections with other data to better determine the πN amplitudes in a model-independent way; results of this analysis are presented.

18 data tables

No description provided.

No description provided.

No description provided.

More…

Total elastic p p, p d, p n cross-sections in the energy range of 1-70 gev

Beznogikh, G.G. ; Bujak, A. ; Nikitin, V.A. ; et al.
Phys.Lett.B 43 (1973) 85-88, 1973.
Inspire Record 84943 DOI 10.17182/hepdata.28125

The total elastic p-p, p-d and p-n cross sections measured at the Serpukhov accelerator and Dubna synchrophasotron are presented in this paper.

2 data tables

SLOPE MEASURED FOR -T = 0.08 TO 0.12 GEV**2.

No description provided.


Polarization parameter in elastic proton proton scattering from 0.75-GeV to 2.84-GeV

Neal, Homer A. ; Longo, Michael J. ;
Phys.Rev. 161 (1967) 1374-1383, 1967.
Inspire Record 51386 DOI 10.17182/hepdata.6264

The polarization parameter in elastic proton-proton scattering has been measured at 0.75, 1.03, 1.32, 1.63, 2.24, and 2.84 GeV by employing a double-scattering technique. An external proton beam from the Brookhaven Cosmotron was focused on a 3 in.-long liquid-hydrogen target and the elastic recoil and scattered protons were detected in coincidence by scintillation counters. The polarization of the recoil beam was determined from the azimuthal asymmetry exhibited in its scattering from a carbon target. This asymmetry was measured by a pair of scintillation-counter telescopes which symmetrically viewed the carbon target. The analyzing power of this system was previously determined in an independent calibration experiment employing a 40%-polarized proton beam at the Carnegie Institute of Technology synchrocyclotron. False asymmetries were cancelled to a high order by periodically rotating the analyzer 180° about the recoil beam line. Spark chambers were utilized to obtain the spatial distribution of the beam as it entered the analyzer; this information allowed an accurate determination of the corrections necessary to compensate for any misalignment of the axis of the analyzer relative to the incident-beam centroid. Values of the polarization parameter as a function of the center-of-mass scattering angle are given for each incident beam energy. The predictions of the Regge theory for polarization in elastic proton-proton scattering and recently published phase-shift solutions are compared with the experimental results. Surprisingly good agreement with the Regge predictions is found despite the low energies involved.

4 data tables

'ALL'.

No description provided.

No description provided.

More…

Polarization Parameter in p-p Scattering from 1.7 to 6.1 BeV

Grannis, P. ; Arens, J. ; Betz, F. ; et al.
Phys.Rev. 148 (1966) 1297-1302, 1966.
Inspire Record 50914 DOI 10.17182/hepdata.26642

The polarization parameter in proton-proton scattering has been measured at incident proton kinetic energies of 1.7, 2.85, 3.5, 4.0, 5.05, and 6.15 BeV and for four-momentum transfer squared between 0.1 and 1.0 (BeV/c)2. The experiment was done with an unpolarized proton beam from the Bevatron striking a polarized proton target. Both final-state protons were detected in coincidence and the asymmetry in counting rate for target protons polarized parallel and antiparallel to the scattering normal was measured. The maximum polarization was observed to decrease from 0.4 at 1.7 BeV to 0.2 at 6.1 BeV. The maximum of the polarization at all energies studied occurs at a four-momentum transfer squared of 0.3 to 0.4 (BeV/c)2.

6 data tables
More…