A Precision Measurement of the Inclusive ep Scattering Cross Section at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Alimujiang, K. ; et al.
Eur.Phys.J.C 64 (2009) 561-587, 2009.
Inspire Record 818546 DOI 10.17182/hepdata.54873

A measurement of the inclusive deep-inelastic neutral current e+p scattering cross section is reported in the region of four-momentum transfer squared, 12<=Q^2<=150 GeV^2, and Bjorken x, 2x10^-4<=x<=0.1. The results are based on data collected by the H1 Collaboration at the ep collider HERA at positron and proton beam energies of E_e=27.6 GeV and E_p=920 GeV, respectively. The data are combined with previously published data, taken at E_p=820 GeV. The accuracy of the combined measurement is typically in the range of 1.3-2%. A QCD analysis at next-to-leading order is performed to determine the parton distributions in the proton based on H1 data.

42 data tables

Data from the 2000 running period at Q**2 There is an additional 1.2 PCT overall normalisation uncertainty not included.

Data from the 2000 running period at Q**2 There is an additional 1.2 PCT overall normalisation uncertainty not included.

Data from the 2000 running period at Q**2 There is an additional 1.2 PCT overall normalisation uncertainty not included.

More…

A Study of the General Characteristics of Proton - anti-Proton Collisions at s**(1/2) = 0.2-TeV to 0.9-TeV

The UA1 collaboration Albajar, C. ; Albrow, M.G. ; Allkofer, O.C. ; et al.
Nucl.Phys.B 335 (1990) 261-287, 1990.
Inspire Record 280412 DOI 10.17182/hepdata.49590

The general characteristics of inelastic proton-antiproton collisions at the CERN SPS Collider are studied with the UA1 detector using magnetic and calorimetric analysis. Results are presented on charged particle multiplicities and transverse and longitudinal momenta, and on total transverse energy distributions at centre of mass energies ranging from 0.2 to 0.9 TeV.

12 data tables

No description provided.

Invariant cross section of charged hadrons.

Inclusive cross section for single charged hadrons as a function of PT for the pseudorapdity region 0.8 to 4 for centre of mass energy 900 GeV.. Data read from plot.

More…

A measurement of the proton structure function F2(x,Q**2) at low x and low Q**2 at HERA.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Nucl.Phys.B 497 (1997) 3-30, 1997.
Inspire Record 441392 DOI 10.17182/hepdata.44625

The results of a measurement of the proton structure function F_2(x,Q~2)and the virtual photon-proton cross section are reported for momentum transfers squared Q~2 between 0.35 GeV~2 and 3.5 GeV~2 and for Bjorken-x values down to 6 10~{-6} using data collected by the HERA experiment H1 in 1995. The data represent an increase in kinematic reach to lower x and Q~2 values of about a factor of 5 compared to previous H1 measurements. Including measurements from fixed target experiments the rise of F_2 with decreasing x is found to be less steep for the lowest Q~2 values measured. Phenomenological models at low Q~2 are compared with the data.

18 data tables

No description provided.

No description provided.

No description provided.

More…

Beauty photoproduction using decays into electrons at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Phys.Rev.D 78 (2008) 072001, 2008.
Inspire Record 786814 DOI 10.17182/hepdata.45317

Photoproduction of beauty quarks in events with two jets and an electron associated with one of the jets has been studied with the ZEUS detector at HERA using an integrated luminosity of 120pb^-1. The fractions of events containing b quarks, and also of events containing c quarks, were extracted from a likelihood fit using variables sensitive to electron identification as well as to semileptonic decays. Total and differential cross sections for beauty and charm production were measured and compared with next-to-leading-order QCD calculations and Monte Carlo models.

7 data tables

Total cross sections for electrons from beauty and charm quarks.

Differential electron cross sections as a function of PT and ETARAP from beauty and charm quarks.

Differential electron cross sections as a function of PT and ETARAP from beauty and charm quarks.

More…

Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Abbas, Ehab ; Abelev, Betty ; Adam, Jaroslav ; et al.
Phys.Lett.B 726 (2013) 610-622, 2013.
Inspire Record 1225979 DOI 10.17182/hepdata.68753

We present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0-5%, 5-10%, 10-20%, and 20-30% most central events) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, $-5.0 < \eta < 5.5$, and employing a special analysis technique based on collisions arising from LHC "satellite" bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles ($N_{\rm ch} = 17165 \pm 772$ for the 0-5% most central collisions). From the measured ${\rm d}N_{\rm ch}/{\rm d}\eta$ distribution we derive the rapidity density distribution, ${\rm d}N_{\rm ch}/{\rm d}y$, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model. We assess the validity of longitudinal scaling by comparing to lower energy results from RHIC. Finally the mechanisms of the underlying particle production are discussed based on a comparison with various theoretical models.

5 data tables

$\rm dN_{ch}/d\eta$ versus $\eta$ for different centralities. Errors are systematic as statistical errors are negligible.

Total number of produced charged particles extrapolated to beam rapidity as a function of the number of participating nucleons in the collision. Statistical errors are negligible. The first(sys) error is the correlated systematic error and the second is that which is uncorrelated to the other points.

$\rm dN_{ch}/d\eta$ per participant pair versus the number of participating nucleons in the collision for different eta ranges. Errors are systematic as statistical errors are negligible.

More…

Combination of Measurements of Inclusive Deep Inelastic $e^{\pm}p$ Scattering Cross Sections and QCD Analysis of HERA Data

The H1 & ZEUS collaborations Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Eur.Phys.J.C 75 (2015) 580, 2015.
Inspire Record 1377206 DOI 10.17182/hepdata.68951

A combination is presented of all inclusive deep inelastic cross sections previously published by the H1 and ZEUS collaborations at HERA for neutral and charged current $e^{\pm}p$ scattering for zero beam polarisation. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV. The data correspond to an integrated luminosity of about 1 fb$^{-1}$ and span six orders of magnitude in negative four-momentum-transfer squared, $Q^2$, and Bjorken $x$. The correlations of the systematic uncertainties were evaluated and taken into account for the combination. The combined cross sections were input to QCD analyses at leading order, next-to-leading order and at next-to-next-to-leading order, providing a new set of parton distribution functions, called HERAPDF2.0. In addition to the experimental uncertainties, model and parameterisation uncertainties were assessed for these parton distribution functions. Variants of HERAPDF2.0 with an alternative gluon parameterisation, HERAPDF2.0AG, and using fixed-flavour-number schemes, HERAPDF2.0FF, are presented. The analysis was extended by including HERA data on charm and jet production, resulting in the variant HERAPDF2.0Jets. The inclusion of jet-production cross sections made a simultaneous determination of these parton distributions and the strong coupling constant possible, resulting in $\alpha_s(M_Z)=0.1183 \pm 0.0009 {\rm(exp)} \pm 0.0005{\rm (model/parameterisation)} \pm 0.0012{\rm (hadronisation)} ^{+0.0037}_{-0.0030}{\rm (scale)}$. An extraction of $xF_3^{\gamma Z}$ and results on electroweak unification and scaling violations are also presented.

9 data tables

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 318$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 300$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 251$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

More…

D* production in deep inelastic scattering at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 407 (1997) 402-418, 1997.
Inspire Record 443964 DOI 10.17182/hepdata.44585

This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel $D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ $ (+ c.c.) has been used in the study. The $e^+p$ cross section for inclusive D^{*\pm} production with $5<Q^2<100 GeV^2$ and $y<0.7$ is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {$1.3<p_T(D^{*\pm})<9.0$ GeV and $| \eta(D^{*\pm}) |<1.5$}. Differential cross sections as functions of p_T(D^{*\pm}), $\eta(D^{*\pm}), W$ and $Q^2$ are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and $\eta$(D^{*\pm}), the charm contribution $F_2^{c\bar{c}}(x,Q^2)$ to the proton structure function is determined for Bjorken $x$ between 2 $\cdot$ 10$^{-4}$ and 5 $\cdot$ 10$^{-3}$.

11 data tables

No description provided.

Integrated charm cross sections in two Q**2 regions.

Distribution of the fractional momentum of the D* in the gamma*-p system.

More…

D*+- meson production in deep-inelastic diffractive interactions at HERA.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 520 (2001) 191-203, 2001.
Inspire Record 562188 DOI 10.17182/hepdata.46767

A measurement is presented of the cross section for D* meson production in diffractive deep-inelastic scattering for the first time at HERA. The cross section is given for the process ep -> eXY, where the system X contains at least one D* meson and is separated by a large rapidity gap from a low mass proton remnant system Y. The cross section is presented in the diffractive deep-inelastic region defined by 2< Q^2 < 100 GeV^2, 0.05 < y < 0.7, x_pom < 0.04, M_Y < 1.6 GeV and |t| < 1 GeV^2. The D* mesons are restricted to the range ptD* > 2 GeV and |\eta_D* | < 1.5. The cross section is found to be 246+-54+-56 pb and forms about 6% of the corresponding inclusive D* cross section. The cross section is presented as a function of various kinematic variables, including z_pom^obs which is an estimate of the fraction of the momentum of the diffractive exchange carried by the parton entering the hard-subprocess. The data show a large component of the cross section at low z_pom^obs where the contribution of the Boson-Gluon-Fusion process is expected to dominate. The data are compared with several QCD--based calculations.

7 data tables

The total D*+- production cross section for the given kinematic region. Also given is the ratio to the DIS*+- production cross section in the samekinematic region.

Cross section as a function of X(NAME=POMERON).

Cross section as a function of LOG10(BETA). BETA = X/X(NAME=POMERON).

More…

Deep inelastic cross-section measurements at large y with the ZEUS detector at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Rev.D 90 (2014) 072002, 2014.
Inspire Record 1292476 DOI 10.17182/hepdata.64778

The reduced cross sections for $e^{+}p$ deep inelastic scattering have been measured with the ZEUS detector at HERA at three different centre-of-mass energies, $318$, $251$ and $225$ GeV. The cross sections, measured double differentially in Bjorken $x$ and the virtuality, $Q^2$, were obtained in the region $0.13\ \leq\ y\ \leq\ 0.75$, where $y$ denotes the inelasticity and $5\ \leq\ Q^2\ \leq\ 110$ GeV$^2$. The proton structure functions $F_2$ and $F_L$ were extracted from the measured cross sections.

82 data tables

The reduced cross section for the reaction E+ P --> E+ X at a centre-of-mass energy 318 GeV and Q^2=7 GeV^2 for the central-vertex region. The (sys) error shown in the table is the total systematic uncertainty, excluding the normalisation uncertainties shown separately below.

The reduced cross section for the reaction E+ P --> E+ X at a centre-of-mass energy 318 GeV and Q^2=9 GeV^2 for the central-vertex region. The (sys) error shown in the table is the total systematic uncertainty, excluding the normalisation uncertainties shown separately below.

The reduced cross section for the reaction E+ P --> E+ X at a centre-of-mass energy 318 GeV and Q^2=12 GeV^2 for the central-vertex region. The (sys) error shown in the table is the total systematic uncertainty, excluding the normalisation uncertainties shown separately below.

More…

Determination of the deep inelastic contribution to the generalised Gerasimov-Drell-Hearn integral for the proton and neutron.

The HERMES collaboration Ackerstaff, K. ; Airapetian, A. ; Akopov, N. ; et al.
Phys.Lett.B 444 (1998) 531-538, 1998.
Inspire Record 476388 DOI 10.17182/hepdata.44128

The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2] for the proton and neutron have been determined from measurements of polarised cross section asymmetries in deep inelastic scattering of 27.5 GeV longitudinally polarised positrons from polarised 1H and 3He internal gas targets. The data were collected in the region above the nucleon resonances in the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the proton the contribution to the generalised Gerasimov-Drell-Hearn integral was found to be substantial and must be included for an accurate determination of the full integral. Furthermore the data are consistent with a QCD next-to-leading order fit based on previous deep inelastic scattering data. Therefore higher twist effects do not appear significant.

13 data tables

Gerasimov-Drell-Hearn sum rule for proton as a function of Q2.

Gerasimov-Drell-Hearn sum rule for neutron as a function of Q2 (integral spans from Q2/2M to infinity instead of zero to infinity, see paper).

Cross section difference for the proton data. Statistical errors only.

More…