Study of Transverse Momenta of Charged Hadrons Produced in Neutrino $p$ and Anti-neutrino $p$ Charged Current Interactions

The Birmingham-CERN-London-Munich-Oxford collaboration Jones, G.T. ; Kennedy, B.W. ; Middleton, R.P. ; et al.
Z.Phys.C 25 (1984) 121, 1984.
Inspire Record 201590 DOI 10.17182/hepdata.16211

Data from a neutrino and antineutrino hydrogen experiment with BEBC are used to investigate transverse properties of the produced charged hadrons. Measurements are presented on average transverse momenta of charged pions as functions of Feynman-x and the hadronic mass, on the transverse momentum flow within an event and on jet-related quantities. The main features of the data are well described by the LUND model. The data favour a version of the model in which soft gluon effects are included and the primordial transverse momentum of the quarks in the proton is small. Effects from 1st order QCD (hard gluon emission) are negligible.

6 data tables

No description provided.

No description provided.

No description provided.

More…

An Investigation of Quark and Diquark Fragmentation in Neutrino $p$ and Anti-neutrino $p$ Charged Current Interactions in {BEBC}

The Aachen-Bonn-CERN-Munich-Oxford collaboration Allen, P. ; Grassler, H. ; Lanske, D. ; et al.
Nucl.Phys.B 214 (1983) 369, 1983.
Inspire Record 180772 DOI 10.17182/hepdata.34013

Distributions of the Feynman x variable have been determined for positive and negative pions in charged current neutrino-proton and antineutrino-proton reactions with hadronic energy W > 3 GeV and Bjorken x B > 0.1. The distributions have been corrected for experimental effects such as measurement errors, uncertainties in estimating the neutrino energy and particle misidentification. In the framework of the quark-parton model, the distributions yield information about the fragmentation of forward going u and d quarks and backward going uu and ud diquarks. Approximate Feynman scaling is observed for the invariant Feynman x F distributions. They can be fitted by a power law of the form (1 − | x F |) n as suggested by the dimensional counting rules. Simple isospin relations predicted by the quark-parton model are fulfilled. The fragmentation of diquarks is compared with that of protons into π ± .

2 data tables

No description provided.

No description provided.


Properties of the Hadronic System Resulting from anti-Muon-neutrino p Interactions

Derrick, M. ; Gregory, P. ; Hyman, L.G. ; et al.
Phys.Rev.D 17 (1978) 1, 1978.
Inspire Record 120660 DOI 10.17182/hepdata.24454

The properties of the final-state hadronic system in antineutrino-proton charged-current interactions are presented. The events were observed in the Fermilab 15-foot hydrogen bubble chamber. The average energy of the events is ∼30 GeV, but there are some interactions beyond 100 GeV. The mean multiplicity of the charged hadrons varies as 〈nCH〉=(0.06±0.06)+(1.22±0.03)lnW2 for hadronic masses W in the range 1.0<W2<50 GeV2. By contrast, the multiplicity depends only weakly on the four-momentum transfer between the leptons. The mean pion multiplicities for events with three or more charged tracks are found to be 〈n−〉=1.64±0.04, 〈n0〉=1.16±0.13, for π− and π0 production, respectively. By comparing the number of positive tracks with π− data from neutrino production, we deduce a mean proton multiplicity 〈np〉 of 0.53 ± 0.15. The single-particle distributions in both longitudinal and transverse momentum are found to be similar to those for nondiffractive production in hadronic collisions. The fragmentation properties of the final-state d quarks are compared to the expectations of the quark-parton model. The fraction of observed neutral-strange-particle production for events with three or more charged tracks is 0.08 ± 0.015 and is consistent with coming completely from associated production.

4 data tables

No description provided.

No description provided.

No description provided.

More…