Dielectron production in p+d and p+p collisions at the beam kinetic energy of 4.9 GeV has been measured with the Dilepton Spectrometer. Features of the dielectron cross section have been studied with cuts on the mass and transverse momentum of the pairs. The spectra for several regions of phase space are presented as a function of the pair mass and transverse momentum.
Mass distribution.
Mass distribution.
Transverse momentum distribution.
The beam energy and invariant mass dependence of the dielectron yield in p + d interactions relative to the yield in p + p interactions is presented for incident kinetic energies from 1.0–4.9 GeV. The ratio of the yield in p + d interactions to that in p + p interactions decreases from 10.5±1.6 at 1.0 GeV to 1.96±0.08 at 4.9 GeV for electron pairs with invariant masses ⩾ 0.15 GeV/ c 2 . The large ratio at 1.0 GeV suggests that dielectron production in the p + d system is dominated by a p + n process. The beam energy dependence of the ratio indicates that this p + n contribution decreases with respect to the other dielectron sources as the incident energy is increased.
No description provided.
No description provided.
No description provided.
The dielectron yield in p + d and p + p collisions at a beam kinetic energy of 4.9 GeV has been measured using the Dilepton Spectrometer (DLS) at the Bevalac. The measured ratio of the yield in p + d to that in p + p collisions, 1.92±0.06, is in disagreement with the assumptions of model calculations applied to our ealier p +Be data, where it was found that p + n bremsstrahlung dominated other sources. While the measured ratio is consistent with a hadron-like origin of the dielectrons, the contributions of known hadronic decays are smaller than the measured yield from p + p collissions.
Background subtracted data uncorrected for acceptance.
Background subtracted data uncorrected for acceptance.