Electromagnetic Properties of the Proton and Neutron

Olson, D.N. ; Schopper, H.F. ; Wilson, R.R. ;
Phys.Rev.Lett. 6 (1961) 286-290, 1961.
Inspire Record 944908 DOI 10.17182/hepdata.20172

None

3 data tables

No description provided.

No description provided.

No description provided.


Photoproduction of pi0 Mesons in Hydrogen

Koester, L.J. ; Mills, F.E. ;
Phys.Rev. 105 (1957) 1900-1913, 1957.
Inspire Record 945000 DOI 10.17182/hepdata.26900

This paper reports measurements of the total cross section from 150 to 240 Mev of incident photon energy and measurements of the 135° differential cross section from 180 to 215 Mev. A Monte Carlo evaluation of the γ-ray telescope efficiency by means of an electronic digital computer is outlined. The combined results indicate that a small but finite amount of S-state production occurs and that the angular distribution becomes flatter as the energy decreases. The latter effect is associated with production in unenhanced P-states and with a lack of electric quadrupole production. Good agreement with the Chew-Low theory is demonstrated by a comparison between the photoproduction and scattering of π0-mesons, where the scattering cross sections are derived from those for charged mesons by charge independence.

1 data table

No description provided.


Photoproduction of Positive Pions in Hydrogen-Magnetic Spectrometer Method

Walker, R.L. ; Teasdale, J.G. ; Peterson, V.Z. ; et al.
Phys.Rev. 99 (1955) 210-219, 1955.
Inspire Record 46872 DOI 10.17182/hepdata.26403

Positive pions produced in a cold, high-pressure hydrogen gas target by the 500-Mev bremsstrahlung of the CalTech synchrotron, have been analyzed by a large magnetic spectrometer. The photoproduction cross section has been measured as a function of photon energy at laboratory angles of 12.5°, 30°, 51°, 73°, 104°, 140°, and 180°. The energy region covered depends somewhat on the angle, but is typically from 200 to 470 Mev. From these excitation curves the angular distribution of the photopions in the center of momentum system is obtained for various photon energies, and these angular distributions are analyzed in the form A+Bcosθ+Ccos2θ. The angular distribution has a backward maximum at low energies and a forward maximum at high energies, the coefficient B changing sign at about 340 Mev. The total cross section shows a striking maximum near 290 Mev, of magnitude 205×10−30 cm2, and falls off above the maximum faster than λ2.

10 data tables

No description provided.

No description provided.

No description provided.

More…

Negative-to-Positive Ratio of Photomesons from Deuterium

Sands, Matthew ; Teasdale, J.G. ; Walker, Robert L. ;
Phys.Rev. 95 (1954) 592-593, 1954.
Inspire Record 944931 DOI 10.17182/hepdata.589

None

2 data tables

No description provided.

No description provided.


The Production of Charged Photomesons from Deuterium and Hydrogen. I

White, R.S. ; Jacobson, M.J. ; Schulz, A.G. ;
Phys.Rev. 88 (1952) 836-850, 1952.
Inspire Record 944937 DOI 10.17182/hepdata.26456

Hydrogen and deuterium gases have been bombarded in a gas target at a temperature of 77°K and at a pressure of about 140 atmospheres by the 318±10 Mev "spread-out" bremsstrahlung photon beam of the Berkeley electron synchrotron. The charged π-mesons which were produced were collimated at angles of 45°, 90°, and 135° to the beam direction. The π+ mesons were detected with trans-stilbene scintillation crystals using πμ, πβ, and πμβ delayed coincidences and π+ and π− mesons were detected with Ilford C-2 200-micron nuclear emulsions. The ratios of the numbers of π− to π+ mesons produced in deuterium were 0.96±0.10, 1.09±0.12, and 1.21±0.17 for the angles of 45°, 90°, and 135°, respectively. No variation of the ratio with meson energy, outside statistics, was observed. Absolute values for the π+ meson energy distribution functions from hydrogen and deuterium per "equivalent quantum" have been measured at each of the above production angles. The differential and total cross sections have been obtained by integrating over energy and angle, respectively. The experimental ratios of the deuterium to hydrogen cross sections are in good agreement with the phenomenological theory of Chew and Lewis when the Hulthén deuteron function with β=6α is used in the initial state, plane waves are used for the nucleons in the final state, and the bremsstrahlung cutoff is taken into account. The statistics of the data are, however, not sufficient to determine the amount of spin interaction. The excitation functions for hydrogen and deuterium and points on the angular distribution curves in the center-of-mass system have been obtained. An upper limit of 0.08 of the charged π-meson cross section was obtained for μ-meson production from deuterium.

1 data table

No description provided.