Large-Angle Elastic Scattering of Negative Pions by Protons at 1.51, 2.01, and 2.53 Bev/c

Lai, Kwan Wu ;
PhD Thesis, Michigan U., 1963.
Inspire Record 1408825 DOI 10.17182/hepdata.70519

The differential elastic scattering cross sections for negative pions on ; protons were measured at incident momenta of 1.51, 2.01, and 2.53 Bev/c with ; emphasis on the angular region outside the diffraction peak. The purpose of the ; experiment was to examine the behavior of the largeangle differential elastic ; cross section as a function of energy from the energy of the highest known ; resonance in the pion-nucleon system into the region where the total. cross ; sections appear to be approaching an asymptotic value. The experiment was ; performed at the Bevatron, using a luminescent chamber system to photograph the ; tracks of the scattered pion and the recoil proton from a liquid hydrogen target. ; A total of 2412 elastic scatterings were analyzed at 1.51 Bev/c, 1300 events at ; 2.01 Bev/c, and 1080 events at 2.53 Bev/c. From the existing data it may be ; noted that the backward bump, which has a maximum height of 2.1 mb/sr at 900 Mev ; and 1.1 mb/sr at 1020 Mev, is down to 0.4 mb/sr at 1.51 Bev/c (1.37 Bev), and is ; not present at 2.01 or 2.53 Bev/c. The angular distributions behind the ; diffraction peak at 2.01 and 2.53 Bev/c are rougly constant, decreasing from 0.18 ; mb/sr at 2.01 Bev/c to 0.125 mb/sr at 2.53 Bev/c. Although the data can be taken ; to suggest some oscillatory structure in this region, they are not inconsistent ; with an isotropic distribution that might be interpreted as evidence for an S-; wave scattering behind the diffraction peak. Large-Angle Elastic Scattering of Negative Pions by Protons at 1.51, 2.01, and 2.53 Bev/c.

3 data tables

No description provided.

No description provided.

No description provided.


K--p and K--n Cross Sections in the Momentum Range 1-4 Bev/c

Cook, V. ; Cork, Bruce ; Hoang, T.F. ; et al.
Phys.Rev. 123 (1961) 320-332, 1961.
Inspire Record 46822 DOI 10.17182/hepdata.26808

The energy dependence of the K−-nucleon total cross sections has been measured over the K− momentum range 0.98-3.98 Bev/c. K−−n cross sections were obtained by deuterium-hydrogen subtraction, with a correction for screening effects. There is evidence for structure in the T=0 K−-nucleon state in the momentum range 0.98-2.0 Bev/c. This structure is absent in the T=1 state. In addition, a measurement was made at 1.95 Bev/c of the angular distribution of the K−−p elastic scattering at small angles. The forward-scattering amplitude obtained from the data gives a ratio of real part to imaginary part 0.5±0.2 at 00. The corresponding ratio for π− mesons at this momentum was found to be 0.4−0.4+0.2. Measurements of the K−−p "elastic" charge exchange gives a cross section which falls from about 10 mb at 1 Bev/c to at most a few mb at 4 Bev/c.

1 data table

No description provided.


Cross Sections for Antiprotons in Hydrogen, Beryllium, Carbon, and Lead

Cork, Bruce ; Lambertson, Glen R. ; Piccioni, Oreste ; et al.
Phys.Rev. 107 (1957) 248-256, 1957.
Inspire Record 944999 DOI 10.17182/hepdata.26942

A strong-focusing momentum channel has been arranged to form a beam from antiprotons produced by 6.0-Bev protons striking an internal target of the Bevatron. The channel consists of five 4-inch-diameter magnetic quadrupole lenses and two deflecting magnets adjusted to give a ±5% momentum interval. The antiprotons were selected from a large background of mesons by a scintillation counter telescope with a time-of-flight coincidence circuit having a resolution of ±2×10−9 second. This system allowed detection of approximately 400 antiprotons per hour. With a liquid hydrogen attenuator, the total antiproton-proton cross section at four different energies, 190, 300, 500, and 700 Mev, has been observed to be 135, 104, 97, and 94 mb, respectively. Also, the total cross sections for antiprotons incident on Be and C have been measured at two energies. The inelastic cross sections for carbon have been measured by observing the pulse heights produced by the interactions in a target of liquid scintillator. To measure the inelastic cross section for a high-Z element, lead wafers were immersed in the liquid scintillator, and to select inelastic events the pulse heights were measured.

4 data tables
More…