Measurement of antiproton production from antihyperon decays in pHe collisions at $\sqrt{s_{NN}}=110$ GeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S. W. ; Beteta, C.Abellan ; et al.
Eur.Phys.J.C 83 (2023) 543, 2023.
Inspire Record 2084295 DOI 10.17182/hepdata.130780

The interpretation of cosmic antiproton flux measurements from space-borne experiments is currently limited by the knowledge of the antiproton production cross-section in collisions between primary cosmic rays and the interstellar medium. Using collisions of protons with an energy of 6.5 TeV incident on helium nuclei at rest in the proximity of the interaction region of the LHCb experiment, the ratio of antiprotons originating from antihyperon decays to prompt production is measured for antiproton momenta between 12 and 110 GeV/c. The dominant antihyperon contribution, namely $\bar{\Lambda} \to \bar{p} \pi^+$ decays from promptly produced $\bar{\Lambda}$ particles, is also exclusively measured. The results complement the measurement of prompt antiproton production obtained from the same data sample. At the energy scale of this measurement, the antihyperon contributions to antiproton production are observed to be significantly larger than predictions of commonly used hadronic production models.

2 data tables

Ratio of the antihyperon decays to prompt antiproton production (R_Hbar) in collisions of 6.5 TeV protons on He nuclei at rest in antiproton momentum and transverse momentum intervals. The average momentum and transverse momentum, as predicted by the EPOS-LHC generator for prompt antiprotons, are also listed for each interval. The uncertainty is split into an uncorrelated component, denoted with delta_uncorr, and a component that is fully correlated among the kinematic intervals, denoted delta_corr.

Ratio of the Lbar decays to prompt antiproton production (R_Lbar) in collisions of 6.5 TeV protons on He nuclei at rest in antiproton momentum and transverse momentum intervals. The average momentum and transverse momentum, as predicted by the EPOS-LHC generator for prompt antiprotons, are also listed for each interval. The uncertainty is split into an uncorrelated component, denoted with delta_uncorr, and a component that is fully correlated among the kinematic intervals, denoted delta_corr.


Measurement of Exclusive $\pi^{+}\pi^{-}$ and $\rho^0$ Meson Photoproduction at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Baty, A. ; et al.
Eur.Phys.J.C 80 (2020) 1189, 2020.
Inspire Record 1798511 DOI 10.17182/hepdata.102569

Exclusive photoproduction of $\rho^0(770)$ mesons is studied using the H1 detector at the $ep$ collider HERA. A sample of about 900000 events is used to measure single- and double-differential cross sections for the reaction $\gamma p \to \pi^{+}\pi^{-}Y$. Reactions where the proton stays intact (${m_Y{=}m_p}$) are statistically separated from those where the proton dissociates to a low-mass hadronic system ($m_p{<}m_Y{<}10$ GeV). The double-differential cross sections are measured as a function of the invariant mass $m_{\pi\pi}$ of the decay pions and the squared $4$-momentum transfer $t$ at the proton vertex. The measurements are presented in various bins of the photon-proton collision energy $W_{\gamma p}$. The phase space restrictions are $0.5 < m_{\pi\pi} < 2.2$ GeV, ${\vert t\vert < 1.5}$ GeV${}^2$, and ${20 < W_{\gamma p} < 80}$ GeV. Cross section measurements are presented for both elastic and proton-dissociative scattering. The observed cross section dependencies are described by analytic functions. Parametrising the $m_{\pi\pi}$ dependence with resonant and non-resonant contributions added at the amplitude level leads to a measurement of the $\rho^{0}(770)$ meson mass and width at $m_\rho = 770.8\ {}^{+2.6}_{-2.7}$ (tot) MeV and $\Gamma_\rho = 151.3\ {}^{+2.7}_{-3.6}$ (tot) MeV, respectively. The model is used to extract the $\rho^0(770)$ contribution to the $\pi^{+}\pi^{-}$ cross sections and measure it as a function of $t$ and $W_{\gamma p}$. In a Regge asymptotic limit in which one Regge trajectory $\alpha(t)$ dominates, the intercept $\alpha(t{=}0) = 1.0654\ {}^{+0.0098}_{-0.0067}$ (tot) and the slope $\alpha^\prime(t{=}0) = 0.233\ {}^{+0.067 }_{-0.074 }$ (tot) GeV${}^{-2}$ of the $t$ dependence are extracted for the case $m_Y{=}m_p$.

28 data tables

Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction off protons, differential in the dipion mass. The tabulated cross sections are $\gamma p$ cross sections but can be converted to $ep$ cross sections using the effective photon flux $\Phi_{\gamma/e}$.

Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction off protons, differential in the dipion mass --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.

Fit of elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction cross section off protons with a Soeding-inspired analytic function including $\rho$ and $\omega$ meson resonant contributions as well as a continuum background which interfere at the amplitude level. Parameters with subscript "el" and "pd" correspond to elastic and proton-dissociative cross sections, respectively.

More…

Version 2
Measurement of antiproton production in ${\rm p He}$ collisions at $\sqrt{s_{NN}}=110$ GeV

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
Phys.Rev.Lett. 121 (2018) 222001, 2018.
Inspire Record 1688924 DOI 10.17182/hepdata.84584

The cross-section for prompt antiproton production in collisions of protons with an energy of $6.5$ TeV incident on helium nuclei at rest is measured with the LHCb experiment from a data set corresponding to an integrated luminosity of $0.5\,nb^{-1}$. The target is provided by injecting helium gas into the LHC beam line at the LHCb interaction point. The reported results, covering antiproton momenta between $12$ and $110\,\mathrm{GeV/}c$, represent the first direct determination of the antiproton production cross-section in ${\rm p He}$ collisions, and impact the interpretation of recent results on antiproton cosmic rays from space-borne experiments.

2 data tables

Double-differential cross-section in antiproton momentum and transverse momentum for antiproton production in collisions of 6.5 TeV protons on He nuclei at rest. The antiproton momentum is defined in the laboratory frame. Results are averaged over the given kinematic range of each bin. The uncertainty is split into an uncertainty delta_uncorr, uncorrelated among the kinematic bins, and an uncertainty delta_corr, fully correlated among the kinematic bins. For both uncertainties, the systematic uncertainty, dominant for most bins, and the statistical uncertainty, are added in quadrature. The average value within each bin is also reported for the antiproton momentum, the transverse momentum, and x-Feynman xF=2 p_Z*/SQRT(S), where p_Z* is the longitudinal antiproton momentum in the center-of-mass system and SQRT(S) the nucleon-nucleon center-of-mass energy. These average values are obtained from simulation (based on EPOS LHC), to avoid biases from reconstruction effects and given the good agreement with data observed for the simulated kinematic spectra.

Double-differential cross-section in antiproton momentum and transverse momentum for antiproton production in collisions of 6.5 TeV protons on He nuclei at rest. The antiproton momentum is defined in the laboratory frame. Results are averaged over the given kinematic range of each bin. The uncertainty is split into an uncertainty delta_uncorr, uncorrelated among the kinematic bins, and an uncertainty delta_corr, fully correlated among the kinematic bins. For both uncertainties, the systematic uncertainty, dominant for most bins, and the statistical uncertainty, are added in quadrature. The average value within each bin is also reported for the antiproton momentum, the transverse momentum, and x-Feynman xF=2 p_Z*/SQRT(S), where p_Z* is the longitudinal antiproton momentum in the center-of-mass system and SQRT(S) the nucleon-nucleon center-of-mass energy. These average values are obtained from simulation (based on EPOS LHC), to avoid biases from reconstruction effects and given the good agreement with data observed for the simulated kinematic spectra.


Measurement of Jet Production Cross Sections in Deep-inelastic $ep$ Scattering at HERA

The H1 collaboration Collaboration, H1 ; Andreev, Vladimir ; Baghdasaryan, Artem ; et al.
Eur.Phys.J.C 77 (2017) 215, 2017.
Inspire Record 1496981 DOI 10.17182/hepdata.86390

A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities $5.5<Q^2<80\,{\rm GeV}^2$ and inelasticities $0.2<y<0.6$ is presented, using data taken with the H1 detector at HERA, corresponding to an integrated luminosity of $290\,{\rm pb}^{-1}$. Double-differential inclusive jet, dijet and trijet cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of $Q^2$. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective $Q^2$-interval are also determined. Previous results of inclusive jet cross sections in the range $150<Q^2<15\,000\,{\rm GeV}^2$ are extended to low transverse jet momenta $5<P_{T}^{\rm jet}<7\,{\rm GeV}$. The data are compared to predictions from perturbative QCD in next-to-leading order in the strong coupling, in approximate next-to-next-to-leading order and in full next-to-next-to-leading order. Using also the recently published H1 jet data at high values of $Q^2$, the strong coupling constant $\alpha_s(M_Z)$ is determined in next-to-leading order.

55 data tables

Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 5.5-8.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.

Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 8.0-11.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.

Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 11.0-16.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.

More…

Exclusive $\rho^0$ Meson Photoproduction with a Leading Neutron at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
Eur.Phys.J.C 76 (2016) 41, 2016.
Inspire Record 1387751 DOI 10.17182/hepdata.74219

A first measurement is presented of exclusive photoproduction of $\rho^0$ mesons associated with leading neutrons at HERA. The data were taken with the H1 detector in the years $2006$ and $2007$ at a centre-of-mass energy of $\sqrt{s}=319$ GeV and correspond to an integrated luminosity of $1.16$ pb$^{-1}$. The $\rho^0$ mesons with transverse momenta $p_T<1$ GeV are reconstructed from their decays to charged pions, while leading neutrons carrying a large fraction of the incoming proton momentum, $x_L>0.35$, are detected in the Forward Neutron Calorimeter. The phase space of the measurement is defined by the photon virtuality $Q^2 < 2$ GeV$^2$, the total energy of the photon-proton system $20 < W_{\gamma p} < 100$ GeV and the polar angle of the leading neutron $\theta_n < 0.75$ mrad. The cross section of the reaction $\gamma p \to \rho^0 n \pi^+$ is measured as a function of several variables. The data are interpreted in terms of a double peripheral process, involving pion exchange at the proton vertex followed by elastic photoproduction of a $\rho^0$ meson on the virtual pion. In the framework of one-pion-exchange dominance the elastic cross section of photon-pion scattering, $\sigma^{\rm el}(\gamma\pi^+ \to \rho^0\pi^+)$, is extracted. The value of this cross section indicates significant absorptive corrections for the exclusive reaction $\gamma p\to\rho^0 n \pi^+$.

11 data tables

The $\gamma p$ cross section integrated in the domain $0.35 < x_L < 0.95$ and $-t^\prime < 1$~GeV$^2$ and averaged over the energy range $20 < W_{\gamma p} < 100$ GeV for two intervals of leading neutron transverse momentum.

Differential photoproduction cross sections ${\rm d}\sigma_{\gamma p}/{\rm d}x_L$ for the exclusive process $\gamma p \to \rho^0 n \pi^+$ in two regions of neutron transverse momentum and $20 < W_{\gamma p} < 100$ GeV. The statistical, uncorrelated and correlated systematic uncertainties, $\delta_{stat}$, $\delta_{sys}^{unc}$ and $\delta_{sys}^{cor}$ respectively, are given, which does not include the global normalisation error of $4.4\%$.

Double differential photoproduction cross sections ${\rm d^2}\sigma_{\gamma p}/{\rm d}x_L{\rm d}p_{T,n}^2$ in the range $20 < W_{\gamma p} < 100$ GeV. The statistical, uncorrelated and correlated systematic uncertainties, $\delta_{stat}$, $\delta_{sys}^{unc}$ and $\delta_{sys}^{cor}$ respectively, are given, which does not include the global normalisation error of $4.4\%$.

More…

Combination of Differential D^{*\pm} Cross-Section Measurements in Deep-Inelastic ep Scattering at HERA

The H1 & ZEUS collaborations Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
JHEP 09 (2015) 149, 2015.
Inspire Record 1353667 DOI 10.17182/hepdata.73328

H1 and ZEUS have published single-differential cross sections for inclusive D^{*\pm}-meson production in deep-inelastic ep scattering at HERA from their respective final data sets. These cross sections are combined in the common visible phase-space region of photon virtuality Q2 > 5 GeV2, electron inelasticity 0.02 < y < 0.7 and the D^{*\pm} meson's transverse momentum pT (D^*) > 1.5 GeV and pseudorapidity |eta(D^*)| < 1.5. The combination procedure takes into account all correlations, yielding significantly reduced experimental uncertainties. Double-differential cross sections d2s /dQ2dy are combined with earlier D^{*\pm} data, extending the kinematic range down to Q2 > 1.5 GeV2. Perturbative next-to-leadingorder QCD predictions are compared to the results.

6 data tables

The combined differential $D^{*\pm}$-production cross section as a function of $p_T(D^{*})$, with its uncorrelated and correlated uncertainties.

The combined differential $D^{*\pm}$-production cross section as a function of $\eta(D^{*})$, with its uncorrelated and correlated uncertainties.

The combined differential $D^{*\pm}$-production cross section as a function of $z(D^{*})$, with its uncorrelated and correlated uncertainties.

More…

Measurement of Dijet Production in Diffractive Deep-Inelastic ep Scattering at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
JHEP 03 (2015) 092, 2015.
Inspire Record 1332186 DOI 10.17182/hepdata.73124

A measurement is presented of single- and double-differential dijet cross sections in diffractive deep-inelastic $ep$ scattering at HERA using data collected by the H1 experiment corresponding to an integrated luminosity of 290 pb^{-1}. The investigated phase space is spanned by the photon virtuality in the range of 4<Q^{2}<100 GeV^{2} and by the fractional proton longitudinal momentum loss x_pom<0.03. The resulting cross sections are compared with next-to-leading order QCD predictions based on diffractive parton distribution functions and the value of the strong coupling constant is extracted.

11 data tables

Integrated cross section in the measurement phase space.

Diffractive DIS dijet cross section measured differentially as a function of $Q^2$. The global normalisation uncertainty of $7.8\%$ is not listed explicitly but is included in the total systematic uncertainty. The last two columns show the correction factors for hadronisation and QED radiation, respectively.

Diffractive DIS dijet cross section measured differentially as a function of $y$. The global normalisation uncertainty of $7.8\%$ is not listed explicitly but is included in the total systematic uncertainty. The last two column show the correction factors for hadronisation and QED radiation, respectively.

More…

Measurement of beauty and charm production in deep inelastic scattering at HERA and measurement of the beauty-quark mass

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
JHEP 09 (2014) 127, 2014.
Inspire Record 1298276 DOI 10.17182/hepdata.64204

The production of beauty and charm quarks in ep interactions has been studied with the ZEUS detector at HERA for exchanged four-momentum squared 5 < Q^2 < 1000 GeV^2 using an integrated luminosity of 354 pb^{-1}. The beauty and charm content in events with at least one jet have been extracted using the invariant mass of charged tracks associated with secondary vertices and the decay-length significance of these vertices. Differential cross sections as a function of Q^2, Bjorken x, jet transverse energy and pseudorapidity were measured and compared with next-to-leading-order QCD calculations. The beauty and charm contributions to the proton structure functions were extracted from the double-differential cross section as a function of x and Q^2. The running beauty-quark mass, m_b at the scale m_b, was determined from a QCD fit at next-to-leading order to HERA data for the first time and found to be 4.07 \pm 0.14 (fit} ^{+0.01}_{-0.07} (mod.) ^{+0.05}_{-0.00} (param.) ^{+0.08}_{-0.05} (theo) GeV.

28 data tables

Differential cross sections for inclusive jet production in beauty events as a function of ET(JET) for ET(JET) > 5 GeV. The measurements are given together with their statistical and systematic uncertainties. Hadronisation and QED radiative corrections, CHAD and CRAD, respectively, are also shown.

Differential cross sections for inclusive jet production in charm events as a function of ET(JET) for ET(JET) > 4.2 GeV. The measurements are given together with their statistical and systematic uncertainties. Hadronisation and QED radiative corrections, CHAD and CRAD, respectively, are also shown.

Differential cross sections for inclusive jet production in beauty events as a function of ETARAP(JET) for -1.6 < ETARAP(JET) < 2.2. The measurements are given together with their statistical and systematic uncertainties. Hadronisation and QED radiative corrections, CHAD and CRAD, respectively, are also shown.

More…

Version 2
Beauty production in pp collisions at $\sqrt{s}$ = 2.76 TeV measured via semi-electronic decays

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 738 (2014) 97-108, 2014.
Inspire Record 1296861 DOI 10.17182/hepdata.858

The ALICE collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity $|y|<0.8$ and transverse momentum $1<p_{\mathrm{T}}<10$ GeV/$c$, in pp collisions at $\sqrt{s} = $ 2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD calculations agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, $\sigma_{\mathrm{b} \rightarrow \mathrm{e}} = 3.47\pm0.40(\mathrm{stat})^{+1.12}_{-1.33}(\mathrm{sys})\pm0.07(\mathrm{norm}) \mu$b, was extrapolated to full phase space using Fixed Order plus Next-to-Leading Log (FONLL) predictions to obtain the total b$\bar{\mathrm{b}}$ production cross section, $\sigma_{\mathrm{b\bar{b}}} = 130\pm15.1(\mathrm{stat})^{+42.1}_{-49.8}(\mathrm{sys})^{+3.4}_{-3.1}(\mathrm{extr})\pm2.5(\mathrm{norm})\pm4.4(\mathrm{BR}) \mu$b.

16 data tables

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in minimum bias triggered events in the electron transverse momentum range 1.5-2.5 GeV/$c$.

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in minimum bias triggered events in the electron transverse momentum range 1.5-2.5 GeV/c.

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in EMCal triggered events in the electron transverse momentum range 4.5-6 GeV/$c$.

More…

Measurement of neutral current e+/-p cross sections at high Bjorken x with the ZEUS detector

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Rev.D 89 (2014) 072007, 2014.
Inspire Record 1269458 DOI 10.17182/hepdata.62545

The neutral current e+/-p cross section has been measured up to values of Bjorken x of approximately 1 with the ZEUS detector at HERA using an integrated luminosity of 187 inv. pb of e-p and 142 inv. pb of e+p collisions at sqrt(s) = 318GeV. Differential cross sections in x and Q2, the exchanged boson virtuality, are presented for Q2 geq 725GeV2. An improved reconstruction method and greatly increased amount of data allows a finer binning in the high-x region of the neutral current cross section and leads to a measurement with much improved precision compared to a similar earlier analysis. The measurements are compared to Standard Model expectations based on a variety of recent parton distribution functions.

17 data tables

Double differential cross section for Q^2=725 GeV^2.

Double differential cross section for Q^2=875 GeV^2.

Double differential cross section for Q^2=1025 GeV^2.

More…