$J/\psi$ Photoproduction from 60-GeV/c to 300-GeV/c

Binkley, Morris E. ; Bohler, C. ; Butler, J. ; et al.
Phys.Rev.Lett. 48 (1982) 73, 1982.
Inspire Record 168767 DOI 10.17182/hepdata.20597

Measurements of the energy and t dependence of diffractive Jψ photoproduction are presented. A significant rise in the cross section over the energy range 60-300 GeV is observed. It is found that (30±4)% of the events are inelastic.

1 data table

No description provided.


$K^+\Lambda$ and $K^+\Sigma^0$ photoproduction with fine center-of-mass energy resolution

The Crystal Ball at MAMI collaboration Jude, T.C. ; Glazier, D.I. ; Watts, D.P. ; et al.
Phys.Lett.B 735 (2014) 112-118, 2014.
Inspire Record 1250810 DOI 10.17182/hepdata.130796

Measurements of $\gamma p \rightarrow K^{+} \Lambda$ and $\gamma p \rightarrow K^{+} \Sigma^0$ cross-sections have been obtained with the photon tagging facility and the Crystal Ball calorimeter at MAMI-C. The measurement uses a novel $K^+$ meson identification technique in which the weak decay products are characterized using the energy and timing characteristics of the energy deposit in the calorimeter, a method that has the potential to be applied at many other facilities. The fine center-of-mass energy ($W$) resolution and statistical accuracy of the new data results in a significant impact on partial wave analyses aiming to better establish the excitation spectrum of the nucleon. The new analyses disfavor a strong role for quark-diquark dynamics in the nucleon.

26 data tables

Excitation function at cos(Theta_K+)cm = -0.8

Excitation function at cos(Theta_K+)cm = -0.7

Excitation function at cos(Theta_K+)cm = -0.6

More…

$\Lambda^{0}$ polarization from the reaction $\gamma + p=K^{+} + \Lambda^{0}$ in the energy range (950÷1050) MeV

Borgia, B. ; Grilli, M. ; Joos, P. ; et al.
Nuovo Cim. 32 (1964) 218-223, 1964.
Inspire Record 1185014 DOI 10.17182/hepdata.37674

None

1 data table

Axis error includes +- 0.0/0.0 contribution (?////).


$\Lambda^{0}$-polarization from the reaction $\gamma+p = \Lambda^{0}+K^{+}$ in the energy range (950÷1050)MeV

Grilli, M. ; Mezzetti, L. ; Nigro, M. ; et al.
Nuovo Cim. 38 (1965) 1467-1488, 1965.
Inspire Record 1185245 DOI 10.17182/hepdata.37616

We report some measurements of the Λ polarization in the reaction Υ+P=K+Λ+0, for 950<Eγ<1050 MeV. In Sects. 1 and 2 the experimental apparatus and the detection techniques used are described. In Sect.3 we discuss our results and those of other groups and compare them with the theoretical predictions.

1 data table

Axis error includes +- 0.0/0.0 contribution (?////).


$\pi^+$ photoproduction on the proton for photon energies from 0.725 to 2.875 GeV

The CLAS collaboration Dugger, M. ; Ritchie, B.G. ; Ball, J.P. ; et al.
Phys.Rev.C 79 (2009) 065206, 2009.
Inspire Record 814847 DOI 10.17182/hepdata.51952

Differential cross sections for the reaction $\gamma p \to n \pi^+$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.725 to 2.875 GeV. Where available, the results obtained here compare well with previously published results for the reaction. Agreement with the SAID and MAID analyses is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been made up to 2.7 GeV. Resonance couplings have been extracted and compared to previous determinations. With the addition of these cross sections to the world data set, significant changes have occurred in the high-energy behavior of the SAID cross-section predictions and amplitudes.

11 data tables

Differential cross sections for incident photon energies 0.725, 0.775, 0.825and 0.875 GeV.

Differential cross sections for incident photon energies 0.925, 0.975, 1.025and 1.075 GeV.

Differential cross sections for incident photon energies 1.125, 1.175, 1.225and 1.275 GeV.

More…

5-GeV - 16-GeV SINGLE pi+ PHOTOPRODUCTION FROM HYDROGEN

Boyarski, A. ; Bulos, F. ; Busza, W. ; et al.
Phys.Rev.Lett. 20 (1968) 300-303, 1968.
Inspire Record 51151 DOI 10.17182/hepdata.21730

The differential cross sections for single-π+ photoproduction from hydrogen have been measured over a range of momentum transfers from -2×10−4 to -2 (GeV/c)2, and photon energies from 5 to 16 GeV. The differential cross section increases by roughly a factor of 2 as the magnitude of the square of the momentum transfer decreases from 0.02 (GeV/c)2. The cross section falls approximately as exp(−3|t|) at large momentum transfers, with a similar momentum-transfer dependence of the cross section at all photon energies studied.

4 data tables

No description provided.

No description provided.

No description provided.

More…

A MEASUREMENT OF THE DIFFERENCE BETWEEN THE SINGLE NUCLEON CROSS-SECTIONS FOR j / psi MUOPRODUCTION IN IRON AND IN H-2, D-2 TARGETS

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 152 (1985) 433-438, 1985.
Inspire Record 207459 DOI 10.17182/hepdata.30432

The cross sections for J ψ production have been measured in interactions of 280 GeV μ + on hydrogen and deuterium (H, D) and also in interactions of 250 GeV μ + on iron. The single-nucleon cross sections in iron are found to be larger than those in H, D. The mean ratio of the iron to H, D photoproduction cross sections in the range 60 < v < 200 GeV is 1.45 ±0.12 (statistical) ±0.22 (systematic error). Within the framework of the photon-gluon fusion model, this indicates that the gluon density per nucleon is ∼45% larger in iron than in H, D in the range 0.026 < x < 0.085, on a mass scale Q 2 eff ∼M 2 J ψ .

3 data tables

First table is from combined H and DEUT data at 280 Gev. Second table is from FE data at 250 Gev.

First table is from combined H and DEUT data at 280 Gev. Second table is from FE data at 250 Gev.

THIS TABLE IS THE RATIO OF THE EFFECTIVE GLUON DISTRIBUTIONS IN IRON AND HYDROGEN(DEUTERIUM) ASSUMING THAT PHOTON-GLUON FUSION IS THE RELEVANT MECHANISM FOR J/PSI PRODUCTION.


A MEASUREMENT OF THE TOTAL HADRONIC CROSS-SECTION IN TAGGED gamma gamma REACTIONS

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.D 41 (1990) 2667, 1990.
Inspire Record 281351 DOI 10.17182/hepdata.22991

We present a measurement of the total cross section for γγ→hadrons, with one photon quasireal and the other a spacelike photon of mass squared −Q2. Results are presented as a function of Q2 and the γγ center-of-mass energy W, with the Q2 range extending from 0.2 to 60 GeV2, and W in the range from 2 to 10 GeV. The data were taken with the TPC/Two-Gamma facility at the SLAC e+e− storage ring PEP, which was operated at a beam energy of 14.5 GeV. The cross section exhibits a gentle falloff with increasing W. Its Q2 dependence is shown to be well described by an incoherent sum of vector-meson and pointlike scattering over most of the observed W range. Agreement at high Q2 is improved if a minimum-pT cutoff (motivated by QCD) is imposed on the pointlike contribution.

4 data tables

Errors are statistical only.

Errors are statistical only.

Errors are statistical only.

More…

A Measurement of $\gamma \gamma \to \rho^+ \rho^-$

The ARGUS collaboration Albrecht, H. ; Bockmann, P. ; Glaser, R. ; et al.
Phys.Lett.B 217 (1989) 205-210, 1989.
Inspire Record 266416 DOI 10.17182/hepdata.29853

The reaction γγ → ϱ + ϱ − → π + π − π 0 π 0 has been studied with the ARGUS detector at the e + e − storage ring DORIS II at DESY. Near threshold, the cross section for this reaction is about four times smaller than for the reaction γγ → ϱ 0 ϱ 0 .

4 data tables

Data read from graph.

Data read from graph.

Data read from graph.

More…

A Measurement of Elastic $J / \psi$ Photoproduction Cross Section at Fermilab E687

The E687 collaboration Frabetti, P.L. ; Paolone, V.S. ; Yager, P.M. ; et al.
Phys.Lett.B 316 (1993) 197-206, 1993.
Inspire Record 359356 DOI 10.17182/hepdata.28834

Measurements of elastic photoproduction cross sections for the J / ψ meson from 100 GeV to 375 GeV are presented. The results indicate that the cross section increases slowly in this range. The shape of the energy dependence agrees well with the photon-gluon fusion model prediction.

3 data tables

Data supplied by V. Paolone.

Cross section data using Bethe-Heitler event normalization.

Cross section data using the Beam Gamma Monitor normalization.