Measurement of the cross section for electroweak production of Z gamma in association with two jets and constraints on anomalous quartic gauge couplings in proton-proton collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 770 (2017) 380-402, 2017.
Inspire Record 1512924 DOI 10.17182/hepdata.77543

A measurement is presented of the cross section for the electroweak production of a Z boson and a photon in association with two jets in proton-proton collisions at sqrt(s)= 8 TeV. The Z bosons are identified through their decays to electron or muon pairs. The measurement is based on data collected with the CMS detector corresponding to an integrated luminosity of 19.7 inverse femtobarns. The electroweak contribution has a significance of 3.0 standard deviations, and the measured fiducial cross section is 1.86 +0.90/-0.75 (stat) +0.34/-0.26 (syst) +/- 0.05 (lumi) fb, while the summed electroweak and quantum chromodynamic total cross section in the same region is observed to be 5.94 +1.53/-1.35 (stat) +0.43/-0.37 (syst) +/- 0.13 (lumi) fb. Both measurements are consistent with the leading-order standard model predictions. Limits on anomalous quartic gauge couplings are set based on the Z gamma mass distribution.

1 data table

The measured fiducial cross section of EW ZGamma+2Jets process.


Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, V. ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 10 (2017) 076, 2017.
Inspire Record 1508173 DOI 10.17182/hepdata.81708

A search is presented for decays beyond the standard model of the 125 GeV Higgs bosons to a pair of light bosons, based on models with extended scalar sectors. Light boson masses between 5 and 62.5 GeV are probed in final states containing four tau leptons, two muons and two b quarks, or two muons and two tau leptons. The results are from data in proton-proton collisions corresponding to an integrated luminosity of 19.7 inverse femtobarns, accumulated by the CMS experiment at the LHC at a center-of-mass energy of 8 TeV. No evidence for such exotic decays is found in the data. Upper limits are set on the product of the cross section and branching fraction for several signal processes. The results are also compared to predictions of two-Higgs-doublet models, including those with an additional scalar singlet.

6 data tables

Median expected 95% CL limits on the branching fraction B(h-->aa)*B^2(a-->tautau) assuming SM h production rates for pseudoscalar mass points between 5 and 15 GeV.

Median observed 95% CL limits on the branching fraction B(h-->aa)*B^2(a-->tautau) assuming SM h production rates for pseudoscalar mass points between 5 and 15 GeV.

Median expected 95% CL limits on the branching fraction B(h-->aa)*B(a-->mumu)*B(a-->bb) assuming SM h production rates for pseudoscalar mass points between 25 and 62.5 GeV.

More…

Measurement of electroweak-induced production of W gamma with two jets in pp collisions at sqrt(s)=8 TeV and constraints on anomalous quartic gauge couplings

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 06 (2017) 106, 2017.
Inspire Record 1507095 DOI 10.17182/hepdata.78254

A measurement of electroweak-induced production of W gamma and two jets is performed, where the W boson decays leptonically. The data used in the analysis correspond to an integrated luminosity of 19.7 inverse femtobarns collected by the CMS experiment in sqrt(s) = 8 TeV proton-proton collisions produced at the LHC. Candidate events are selected with exactly one muon or electron, missing transverse momentum, one photon, and two jets with large rapidity separation. An excess over the hypothesis of the standard model without electroweak production of W gamma with two jets is observed with a significance of 2.7 standard deviations. The cross section measured in the fiducial region is 10.8 +/- 4.1 (stat) +/- 3.4 (syst) +/- 0.3 (lumi) fb, which is consistent with the standard model electroweak predictions. The total cross section for W gamma production in association with 2 jets in the same fiducial region is measured to be 23.2 +/- 4.3 (stat) +/- 1.7 (syst) +/- 0.6 (lumi) fb, which is consistent with the standard model prediction from the combination of electroweak- and quantum chromodynamics-induced processes. No deviations are observed from the standard model predictions and experimental limits on anomalous quartic gauge couplings f[M, 0-7] / Lambda^4, f[T, 0-2] / Lambda^4, and f[T, 5-7] / Lambda^4 are set at 95% confidence level.

2 data tables

Summary of the measured and predicted observables.

Observed and expected shape-based exclusion limits for the aQGC parameters at 95% CL, without any form factors.


Measurements of the associated production of a Z boson and b jets in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, V. ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 77 (2017) 751, 2017.
Inspire Record 1499471 DOI 10.17182/hepdata.77544

Measurements of the associated production of a Z boson with at least one jet originating from a b quark in proton-proton collisions at sqrt(s) = 8 TeV are presented. Differential cross sections are measured with data collected by the CMS experiment corresponding to an integrated luminosity of 19.8 inverse femtobarns. Z bosons are reconstructed through their decays to electrons and muons. Cross sections are measured as a function of observables characterizing the kinematics of the b jet and the Z boson. Ratios of differential cross sections for the associated production with at least one b jet to the associated production with any jet are also presented. The production of a Z boson with two b jets is investigated, and differential cross sections are measured for the dijet system. Results are compared to theoretical predictions, testing two different flavour schemes for the choice of initial-state partons.

20 data tables

Differential fiducial cross section for Z(1b) production as a function of the leading b jet pT

Cross section ratio for Z(1b) and Z+jets production as a function of the leading b/inclusive (j) jet pT

Differential fiducial cross section for Z(1b) production as a function of the leading b jet |eta|

More…

Measurement of the ttbbar production cross section using events in the e mu final state in pp collisions at sqrt(s)=13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 77 (2017) 172, 2017.
Inspire Record 1497736 DOI 10.17182/hepdata.76735

The cross section of top quark-antiquark pair production in proton-proton collisions at sqrt(s) = 13 TeV is measured by the CMS experiment at the LHC, using data corresponding to an integrated luminosity of 2.2 inverse femtobarns. The measurement is performed by analyzing events in which the final state includes one electron, one muon, and two or more jets, at least one of which is identified as originating from hadronization of a b quark. The measured cross section is 815 +/- 9 (stat) +/- 38 (syst) +/- 19 (lumi) pb, in agreement with the expectation from the standard model.

3 data tables

Summary of the individual contributions to the uncertainty in the $\sigma_{t\bar{t}}$ measurement.

Measurement of the $t\bar{t}$ production cross-section in $pp$ collisions at $\sqrt{s} = 13$ TeV.

Number of dilepton events obtained after applying the full selection. The results are given for the individual sources of background, $t\bar{t}$ signal with a top quark mass of 172.5 GeV and $\sigma_{t\bar{t}}$ = 832 +/- 46 pb, and data. The uncertainties correspond to statistical and systematic components.


Measurements of the differential production cross sections for a Z boson in association with jets in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 04 (2017) 022, 2017.
Inspire Record 1497519 DOI 10.17182/hepdata.128149

Cross sections for the production of a Z boson in association with jets in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 8 TeV are measured using a data sample collected by the CMS experiment at the LHC corresponding to 19.6 inverse femtobarns. Differential cross sections are presented as functions of up to three observables that describe the jet kinematics and the jet activity. Correlations between the azimuthal directions and the rapidities of the jets and the Z boson are studied in detail. The predictions of a number of multileg generators with leading or next-to-leading order accuracy are compared with the measurements. The comparison shows the importance of including multi-parton contributions in the matrix elements and the improvement in the predictions when next-to-leading order terms are included.

128 data tables

The cross section for Z($\rightarrow\ell\ell$) + jets production measured as a function of the exclusive jet multiplicity, $N_{\text{jets}}$, and breakdown of the relative uncertainty.

Bin-to-bin correlation in the the cross section for Z($\rightarrow\ell\ell$) + jets production measured as a function of the exclusive jet multiplicity, $N_{\text{jets}}$.

The cross section for Z($\rightarrow\ell\ell$) + jets production measured as a function of the 1$^\text{st}$ jet $p_{\text{T}}$, $p_{\text{T}}(\text{j}_1)$, and breakdown of the relative uncertainty.

More…

A search for new phenomena in pp collisions at sqrt(s) = 13 TeV in final states with missing transverse momentum and at least one jet using the alphaT variable

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 77 (2017) 294, 2017.
Inspire Record 1495423 DOI 10.17182/hepdata.77606

A search for new phenomena is performed in final states containing one or more jets and an imbalance in transverse momentum in pp collisions at a centre-of-mass energy of 13 TeV. The analysed data sample, recorded with the CMS detector at the CERN LHC, corresponds to an integrated luminosity of 2.3 inverse femtobarns. Several kinematic variables are employed to suppress the dominant background, multijet production, as well as to discriminate between other standard model and new physics processes. The search provides sensitivity to a broad range of new-physics models that yield a stable weakly interacting massive particle. The number of observed candidate events is found to agree with the expected contributions from standard model processes, and the result is interpreted in the mass parameter space of fourteen simplified supersymmetric models that assume the pair production of gluinos or squarks and a range of decay modes. For models that assume gluino pair production, masses up to 1575 and 975 GeV are excluded for gluinos and neutralinos, respectively. For models involving the pair production of top squarks and compressed mass spectra, top squark masses up to 400 GeV are excluded.

97 data tables

Summary of the lower bounds of the first and final bins in $H_{\mathrm{T}}$ in [GeV] (the latter in parentheses) as a function of $n_{\text{jet}}$ and $n_{\text{b}}$.

Systematic uncertainties (in percent) in the transfer ($\mathcal{T}$) factors used in the method to estimate the SM backgrounds with genuine $\vec{p}_t^{miss}$ in the signal region. The quoted ranges provide representative values of the observed variations as a function of $n_{\mathrm{jet}}$ and $H_{\mathrm{T}}$.

A summary of the simplified SUSY models used to interpret the results of this search. All on-shell SUSY particles in the decay are stated.

More…

Searches for invisible decays of the Higgs boson in pp collisions at $\sqrt{s}$ = 7, 8, and 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 02 (2017) 135, 2017.
Inspire Record 1495025 DOI 10.17182/hepdata.79078

Searches for invisible decays of the Higgs boson are presented. The data collected with the CMS detector at the LHC correspond to integrated luminosities of 5.1, 19.7, and 2.3 inverse femtobarns at centre-of-mass energies of 7, 8, and 13 TeV, respectively. The search channels target Higgs boson production via gluon fusion, vector boson fusion, and in association with a vector boson. Upper limits are placed on the branching fraction of the Higgs boson decay to invisible particles, as a function of the assumed production cross sections. The combination of all channels, assuming standard model production, yields an observed (expected) upper limit on the invisible branching fraction of 0.24 (0.23) at the 95% confidence level. The results are also interpreted in the context of Higgs-portal dark matter models.

9 data tables

Observed and expected 95% CL limits on $\sigma\mathcal{B}(H\rightarrow inv)/\sigma(SM)$ for individual combinations of categories targeting qqH, VH, and ggH production, and the full combination assuming a Higgs boson with a mass of 125 GeV.

Profile likelihood ratio as a function of $\mathcal{B}(H\rightarrow inv)$ assuming SM production cross sections of a Higgs boson with a mass of 125 GeV. The solid curves represent the observations in data and the dashed curves represent the expected result assuming no invisible decays of the Higgs boson. The observed and expected likelihood scans for the partial combinations of the qqH tagged, VH tagged, and ggH tagged analyses, and the full combination.

Profile likelihood ratio as a function of $\mathcal{B}(H\rightarrow inv)$ assuming SM production cross sections of a Higgs boson with a mass of 125 GeV. The solid curves represent the observations in data and the dashed curves represent the expected result assuming no invisible decays of the Higgs boson. The observed and expected likelihood scans for the partial combinations of the 7+8 and 13 TeV analyses, and the full combination.

More…

Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 95 (2017) 092001, 2017.
Inspire Record 1491950 DOI 10.17182/hepdata.76554

Differential and double-differential cross sections for the production of top quark pairs in proton-proton collisions at 13 TeV are measured as a function of jet multiplicity and of kinematic variables of the top quarks and the top quark-antiquark system. This analysis is based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurements are performed in the lepton+jets decay channels with a single muon or electron in the final state. The differential cross sections are presented at particle level, within a phase space close to the experimental acceptance, and at parton level in the full phase space. The results are compared to several standard model predictions.

164 data tables

Absolute cross section at particle level.

Covariance matrix of absolute cross section at particle level.

Absolute cross section at particle level.

More…

Version 2
Measurements of differential cross sections for associated production of a W boson and jets in proton-proton collisions at sqrt(s)=8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 95 (2017) 052002, 2017.
Inspire Record 1491953 DOI 10.17182/hepdata.76995

Differential cross sections for a W boson produced in association with jets are measured in a data sample of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the CMS detector and corresponding to an integrated luminosity of 19.6 inverse femtobarns. The W bosons are identified through their decay mode W to mu nu. The cross sections are reported as functions of jet multiplicity, transverse momenta, and the scalar sum of jet transverse momenta (HT) for different jet multiplicities. Distributions of the angular correlations between the jets and the muon are examined, as well as the average number of jets as a function of HT and as a function of angular variables. The measured differential cross sections are compared with tree-level and higher-order recent event generators, as well as next-to-leading-order and next-to-next-to-leading-order theoretical predictions. The agreement of the generators with the measurements builds confidence in their use for the simulation of W+jets background processes in searches for new physics at the LHC.

78 data tables

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 7.

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 7.

The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 7.

More…