Measurement of Spin Density Matrix Elements in $\Lambda(1520)$ Photoproduction at 8.2-8.8 GeV

The GlueX collaboration Adhikari, S. ; Akondi, C.S. ; Albrecht, M. ; et al.
Phys.Rev.C 105 (2022) 035201, 2022.
Inspire Record 1892395 DOI 10.17182/hepdata.132920

We report on the measurement of spin density matrix elements of the $\Lambda(1520)$ in the photoproduction reaction $\gamma p\rightarrow \Lambda(1520)K^+$, via its subsequent decay to $K^{-}p$. The measurement was performed as part of the GlueX experimental program in Hall D at Jefferson Lab using a linearly polarized photon beam with $E_\gamma =$ 8.2-8.8 GeV. These are the first such measurements in this photon energy range. Results are presented in bins of momentum transfer squared, $-(t-t_\text{0})$. We compare the results with a Reggeon exchange model and determine that natural exchange amplitudes are dominant in $\Lambda(1520)$ photoproduction.

10 data tables

Numerical results for all presented SDMEs. The first uncertainty is statistical, the second systematic

Numerical results for all presented natural and unnatural combinations, and covariances between $\rho^1_{11}$ and $\rho^1_{33}$. The first uncertainty is statistical, the second systematic

This table contains thinned out samples of the Markov chains used in the parameter estimation of the SDME measurements for $-(t-t_\text{0}) = 0.197\pm0.069~\text{GeV}^2/c^2$, reported in the main article. One in about 250 steps in the chain, which results in 200 different sets of SDMEs, is provided. These values should be used instead of bootstrapping of the results, in order to estimate uncertainties of physics models fitted to this data. To assess how the uncertainties propagate to the model uncertainties, one should evaluate the model under scrutiny for each of the 200 different sets of SDMEs. Plotting all resulting lines in a single plot will create bands which reflect the influence of the uncertainties in the data on the model. This method has the great advantage that all correlations are accurately taken into account.

More…

Measurement of the central exclusive production of charged particle pairs in proton-proton collisions at $\sqrt{s} = 200$ GeV with the STAR detector at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
JHEP 07 (2020) 178, 2020.
Inspire Record 1792394 DOI 10.17182/hepdata.94264

We report on the measurement of the Central Exclusive Production of charged particle pairs $h^{+}h^{-}$ ($h = \pi, K, p$) with the STAR detector at RHIC in proton-proton collisions at $\sqrt{s} = 200$ GeV. The charged particle pairs produced in the reaction $pp\to p^\prime+h^{+}h^{-}+p^\prime$ are reconstructed from the tracks in the central detector, while the forward-scattered protons are measured in the Roman Pot system. Differential cross sections are measured in the fiducial region, which roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range $0.04~\mbox{GeV}^2 < -t_1 , -t_2 < 0.2~\mbox{GeV}^2$, invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range $|\eta|<0.7$. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of $\pi^{+}\pi^{-}$ and $K^{+}K^{-}$ pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to $\pi^{+}\pi^{-}$ production. The fiducial $\pi^+\pi^-$ cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the $f_0(980)$, $f_2(1270)$ and $f_0(1500)$, with a possible small contribution from the $f_0(1370)$. Fits to the extrapolated differential cross section as a function of $t_1$ and $t_2$ enable extraction of the exponential slope parameters in several bins of the invariant mass of $\pi^+\pi^-$ pairs. These parameters are sensitive to the size of the interaction region.

47 data tables

Differential fiducial cross section for CEP of $\pi^+\pi^-$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $\pi^+$, $\pi^-$ - $p_{\mathrm{T}} > 0.2~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

Differential fiducial cross section for CEP of $K^+K^-$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $K^+$, $K^-$ - $p_{\mathrm{T}} > 0.3~\mathrm{GeV}$ - $min(p_{\mathrm{T}}(K^+), p_{\mathrm{T}}(K^-)) < 0.7~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

Differential fiducial cross section for CEP of $p\bar{p}$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $p$, $\bar{p}$ - $p_{\mathrm{T}} > 0.4~\mathrm{GeV}$ - $min(p_{\mathrm{T}}(p), p_{\mathrm{T}}(\bar{p})) < 1.1~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

More…

Parity-Nonconserving Optical Rotation at 876 nm in Bismuth

Macpherson, M.J. ; Stacey, D.N. ; Baird, P.E.G. ; et al.
EPL 4 (1987) 811-816, 1987.
Inspire Record 1408819 DOI 10.17182/hepdata.70515

We have measured parity-nonconserving optical rotation in the vicinity of the M1 absorption transition at 876 nm in bismuth. The result, R = Im(E1PNC/M1) = (-10.0 ± 1.0) centerdot 10-8, is in agreement with calculations based on the standard model of the electroweak interaction. The predicted form of the PNC rotation spectrum has been verified to high accuracy.

1 data table

No description provided.


Measurement of parity non-conserving optical rotation in the 648 nm transition in atomic bismuth

Taylor, J.D. ; Baird, P.E.G. ; Hunt, R.G. ; et al.
J.Phys.B 20 (1987) 5423-5442, 1987.
Inspire Record 1393361 DOI 10.17182/hepdata.38568

Parity non-conserving (PNC) optical rotation has been measured by laser polarimetry in the 648 nm magnetic dipole transition (6p$^{3}J$=$\frac{3}{2}\rightarrow$6p$^{3}J'=\frac{5}{2}$) in atomic bismuth. The experiment involves finding the small differences in rotation between selected frequency points in the vicinity of the F = 6 $\rightarrow$ F' = 7 hyperfine component. Faraday rotation, which can be distinguished from PNC rotation by its wavelength dependence, is used in locking the laser frequency and calibrating the PNC' effect. Results obtained over a six-year period are summarised; a detailed discussion of error sources and associated tests is given. The final result for the PNC parameter of the 648 nm transition is R = (-9.3 $\pm$ 1.4)X10$^{-8}$. This is in agreement with the measurements of Birich et a/ but not with those of Barkov and Zolotorev. It is also consistent with the standard model of the electroweak interaction, but the uncertainty in the atomic theory is now the limiting factor in the comparison.

2 data tables

Axis error includes +- 0.0/0.0 contribution (?////).

Axis error includes +- 0.0/0.0 contribution (?////).


ATOMIC PARITY VIOLATION MEASUREMENTS IN THE HIGHLY FORBIDDEN (6)S(1/2) - (7)S(1/2) CESIUM TRANSITION. 3. DATA ACQUISITION AND PROCESSING. RESULTS AND IMPLICATIONS

Bouchiat, M.A. ; Guena, J. ; Pottier, L. ; et al.
J.Phys.(France) 47 (1986) 1709-1730, 1986.
Inspire Record 232798 DOI 10.17182/hepdata.38588

This paper completes the detailed presentation of our PV experiment on the 6S1/2 - 7S1/2 transition in Cs. A detailed description of the data acquisition and processing is given. The results of two independent measurements made on ΔF = 0 and ΔF =1 hfs components agree, providing an important cross-check. After a complete reanalysis of systematics and calibration, the precision is slightly improved, leading to the weighted average Im Epv 1/β = - 1.52 ± 0.18 mV/cm. Later results from an independent group agree quite well. With the semi-empirical value β = (26.8 ± 0.8) a30, our result yields Epv1 = (- 0.79 ± 0.10) x 10-11 i |e|a0. Coupled with the atomic calculations, this implies that the weak nuclear charge of Cs is Qw = -68 ± 9. This value agrees with the standard electroweak theory and leads to a weak interaction angle sin2 θ W = 0.21 ± 0.04. The complementarity of these measurements with high energy experiments is illustrated.

3 data tables

Revision of the earlier experiment PL 117B, 358. (7s)2S1/2:F=4 --> (6s)2S1/2:F=4 transition.

Revision of the earlier experiment PL 134B, 463. (7s)2S1/2:F=3 --> (6s)2S1/2:F=4 transition.

Combined of the two above measurements following the philosophy: quadratic sum of the statistical and systematic uncertainties and weighting each result by the squared reciprocal of that uncertainty. (7s)2S1/2 --> (6s)2S1/2 transitions.


eta-helium quasi-bound states.

Willis, N. ; Le Bornec, Y. ; Zghiche, A. ; et al.
Phys.Lett.B 406 (1997) 14-19, 1997.
Inspire Record 441131 DOI 10.17182/hepdata.40436

The cross section and tensor analysing power t_20 of the d\vec{d}->eta 4He reaction have been measured at six c.m. momenta, 10 < p(eta) < 90 MeV/c. The threshold value of t_20 is consistent with 1/\sqrt{2}, which follows from parity conservation and Bose symmetry. The much slower momentum variation observed for the reaction amplitude, as compared to that for the analogous pd->eta 3He case, suggests strongly the existence of a quasi-bound state in the eta-4He system and optical model fits indicate that this probably also the case for eta-3He.

1 data table

The spin-averaged amplitude squared is defined as follows: ABS(AMP)**2 = (P_deut/P_eta)*D(SIG)/D(OMEGA) and obtained by assuming the angular distributions to be isotropic. The errors in this quantity includes a contribution from Delta(P_eta). The statistical error of about 2% are added quadratically to the systemat ic error.


Test of low-energy theorems for p(gamma(pol.),pi0)p in the threshold region.

Schmidt, A. ; Achenbach, P. ; Ahrens, J. ; et al.
Phys.Rev.Lett. 87 (2001) 232501, 2001.
Inspire Record 556802 DOI 10.17182/hepdata.31362

The photon asymmetry in the reaction p(\vec{\gamma},\pi^{0})p close to threshold has been measured for the first time with the photon spectrometer TAPS using linearly polarized photons from the tagged-photon facility at the Mainz Microtron MAMI. The total and differential cross sections were also measured simultaneously with the photon asymmetry. This allowed determination of the S-wave and all three P-wave amplitudes. The low-energy theorems based on the parameter-free third-order calculations of heavy-baryon chiral perturbation theory for P1 and P2 agree with the experimental values.

1 data table

Polarized photon beam.


Precise Coherent $K_S$ Regeneration Amplitudes for C, Al, Cu, {SN} and Pb Nuclei From 20-{GeV}/$c$ to 140-{GeV}/$c$ and Their Interpretation

Gsponer, A. ; Hoffnagle, J. ; Molzon, W.R. ; et al.
Phys.Rev.Lett. 42 (1979) 13, 1979.
Inspire Record 6964 DOI 10.17182/hepdata.20800

We have determined the coherent KS regeneration amplitudes on various nuclei, from 20 to 140 GeV/c, using a particularly systematics-free technique. Our results are well represented by |(f−f¯)k|=2.23A0.758p−0.614 mb. This p dependence corresponds to an effective "nuclear" intercept ``αω(0)''=0.386±0.009, whereas the elementary value is αω(0)=0.44±0.01. Comparisons are made with data below 25 GeV/c, and with optical-model predictions. The latter work only if "αω(0)" is postulated to hold for the elementary amplitudes.

1 data table

No description provided.


Measurement of the Real Part of the Forward Amplitude in K- n and K+ n Elastic Scattering at 10-GeV/c and a New K+- n Dispersion Relation

Baillon, P. ; Declais, Y. ; Ferro-Luzzi, M. ; et al.
Nucl.Phys.B 134 (1978) 31-48, 1978.
Inspire Record 122470 DOI 10.17182/hepdata.35130

The differential cross section in the very forward direction has been measured for K − and K + scattering (break-up and coherent) on a deuterium target at an incident momentum of 10 GeV/ c . From these measurements and using a model for the scattering and re-scattering effects in deuterium, we have exploited the Coulomb-nuclear interference to deduce the real part of the K ± n scattering amplitude at a momentum transfer t = 0. The measurements are the first ever obtained for the K + n reaction and the first at this energy for the K − n reaction. A comparison has been made between our results and those predicted from dispersion relations. A new dispersion-relation fit including all the existing K ± n values at different energies has been performed.

2 data tables

SUM OF COHERENT AND BREAK-UP SCATTERING ON DEUTERIUM.

FROM FIT TO D(SIG)/DT OVER -T=0.0018 TO 0.074 GEV**2 ALLOWING FOR COULOMB SCATTERING, DOUBLE SCATTERING, INTERFERENCES AND FERMI MOTION. CORRELATION BETWEEN SLOPE AND RE(AMP)/IM(AMP) IS REFLECTED IN THE GIVEN SYSTEMATIC E RRORS.


Coherent Regeneration of $K_s$'s by Carbon as a Test of Regge Pole Exchange Theory

Roehrig, J. ; Gsponer, A. ; Molzon, W.R. ; et al.
Phys.Rev.Lett. 38 (1977) 1116, 1977.
Inspire Record 5134 DOI 10.17182/hepdata.21018

A measurement of the coherent regeneration amplitude in carbon in the energy range 30-130 GeV is presented. The results are consistent with the dominance of this process by ω exchange, and a precise value of the intercept of the ω trajectory is obtained: αω(0)=0.390±0.014.

1 data table

No description provided.