Measurement of the forward - backward asymmetry in e+ e- ---> b anti-b and the b quark branching ratio to muons at TRISTAN using neural networks

The AMY collaboration Ueno, K. ; Kanda, S. ; Olsen, S.L. ; et al.
Phys.Lett.B 381 (1996) 365-371, 1996.
Inspire Record 418709 DOI 10.17182/hepdata.38513

The forward-backward asymmetry in e + e − → b b at s = 57.9 GeV and the b-quark branching ratio to muons have been measured using neural networks. Unlike previous methods for measuring the b b forward-backward asymmetry where the estimated background from c -quark decays and other sources are subtracted, here events are categorized as either b b or non- b b events by neural networks based on event-by-event characteristics. The determined asymmetry is −0.429 ± 0.044 (stat) ± 0.047 (sys) and is consistent with the prediction of the standard model. The measured B B mixing parameter is 0.136 ± 0.037 (stat) ± 0.040 (sys) ± 0.002 (model) and the measured b-quark branching ratio to muons is 0.122 ± 0.006 (stat) ± 0.007 (sys).

1 data table

Charged particle productions at 90 degrees in the center-of-mass in very high energy proton proton collisions

Banner, M. ; Hamel, J.L. ; Pansart, J.P. ; et al.
Phys.Lett.B 41 (1972) 547-551, 1972.
Inspire Record 85071 DOI 10.17182/hepdata.28219

The transverse momentum distribution at 90° of pions, protons and antiprotons have been measured at the CERN intersecting storage rings for C.M. energies between 23.2 and 52.7 GeV. In this energy range, the pion and proton distributions are almost energy independent. The antiproton production rises by a factor of two between 23.2 and 52.7 GeV.

3 data tables

The invariant cross section was fitted by CONST*EXP(-SLOPE*PT).

The invariant cross section was fitted by CONST*EXP(-SLOPE(C=1)*PT+SLOPE(C=2)*PT**2).

No description provided.


Study of quasiexclusive neutral meson production in p N interactions at E(p) = 70-GeV in the deep fragmentation region.

The SPHINX collaboration Golovkin, S.V. ; Kozhevnikov, A.P. ; Kubarovsky, V.P. ; et al.
Z.Phys.A 359 (1997) 327-335, 1997.
Inspire Record 445405 DOI 10.17182/hepdata.40690

Quasiexclusive neutral meson production in pN-interactions is studied in experiments with the SPHINX facility operating in a proton beam from the IHEP accelerator (Ep=70 GeV). The cross sections and the parameters of the differential distributions for πo, ω, η and Ko production in the deep fragmentation region (xF > 0.79 ÷ 0.86) are presented. The results show that such proton quasiexclusive reactions with baryon exchange may be promising in searches for exotic mesons.

8 data tables

No description provided.

No description provided.

Data on the graph only.

More…

Inelastic Diffractive Scattering at FNAL Energies

Ayres, D.S. ; Diebold, Robert E. ; Cutts, D. ; et al.
Phys.Rev.Lett. 37 (1976) 1724, 1976.
Inspire Record 109174 DOI 10.17182/hepdata.21057

Inelastic differential cross sections have been measured for π±p, K±p, and p±p at 140- and 175-GeV/c incident momentum over a |t| range from 0.05 to 0.6 GeV2 and covering a missing-mass region from 2.4 to 9 GeV2. For Mx2 greater than 4 GeV2, the invariant quantity Mx2d2σdtdMx2 was found to be independent of Mx2 at fixed t and could be adequately described by a simple triple-Pomeron form. The values obtained for the triple-Pomeron couplings are identical within statistics for all channels.

1 data table

Data from 140 GeV and 175 GeV are combined. The distributions are fit to CONST*(SLOPE(C=1)*T+SLOPE(C=2)*T**2).


Normalized Small Y Cross-Sections for Neutrinos and anti-neutrinos at High-Energy

Barish, B.C. ; Bartlett, J.F. ; Bodek, A ; et al.
Phys.Rev.Lett. 39 (1977) 741, 1977.
Inspire Record 5717 DOI 10.17182/hepdata.50114

We present results on flux-normalized neutrino and antineutrino cross sections near y=0 from data obtained in the Fermilab narrow-band beam. We conclude that values of σ0=dσdy|y=0 are consistent with rising linearly with energy over the range 45<~Eν<~20.5 GeV. The separate averages of ν and ν¯, each measured to 4%, are equal to well within the errors. The best fit for the combined data gives σ0E=(0.719±0.035)×10−38 cm2/GeV at an average Eν of 100 GeV.

2 data tables

FE nucleus. The SIG/Enu is fitted to CONST(N=SIG)+CONST(N=T)*E.

FE nucleus. Averaged over the energies and beams.


Energy Dependence of the Pseudorapidity Distributions in Proton-Nucleus Collisions Between 50-GeV/c and 200-GeV/c.

Halliwell, C. ; Elias, J.E. ; Busza, W. ; et al.
Phys.Rev.Lett. 39 (1977) 1499-1502, 1977.
Inspire Record 123287 DOI 10.17182/hepdata.21004

Pseudorapidity distributions for proton-nucleus interactions are presented. The data cover twelve nuclei ranging from carbon to uranium and three incident proton momenta, 50, 100, and 200 GeV/c.

1 data table

Three-dimensional avegage multiplicity distribution is parametrized to CONST(C=F)+CONST(C=G)*COL+CONST(C=H)*COL, where COL = A(N=NUCLEUS)*SIG(Q=P P)/SIG(Q=P NUCLEUS).


Factorial and Cumulant Moments in $e^{+}e^{-}\to$ Hadrons at the Z$^0$ Resonance

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Lett.B 371 (1996) 149-156, 1996.
Inspire Record 415576 DOI 10.17182/hepdata.41682

We present the first experimental study of the ratio of cumulant to factorial moments of the charged-particle multiplicity distribution in high-energy particle interactions, using hadronic Z$^0$ decays collected by the SLD experiment at SLAC. We find that this ratio, as a function of the moment-rank $q$, decreases sharply to a negative minimum at $q=5$, which is followed by quasi-oscillations. These features are insensitive to experimental systematic effects and are in qualitative agreement with expectations from next-to-next-to-leading-order perturbative QCD.

1 data table

CONST is the cumulant to factorial moments ratio. See text for definition.


Production of Multi - Pion Systems With Large Longitudinal Momentum at the {CERN} {ISR}

Lockman, William S. ; Meyer, T. ; Rander, J. ; et al.
Phys.Rev.Lett. 41 (1978) 680-683, 1978.
Inspire Record 6695 DOI 10.17182/hepdata.20814

Inclusive cross sections are presented for 2π and 3π systems with large longitudinal x at the highest intersecting storage ring energies (s=53 GeV for 2π; s=53 and 62 GeV for 3π). The ratio π+π−π−π− rises sharply with increasing x similar to the ratio K+K−, as expected in a quark-model interpretation.

2 data tables

The differential cross section is fitted by the equation : E*D3(SIG)/D3(P) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).

The differential cross section is fitted by the equation : E*D3(SIG)/D3(P) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).


MEASUREMENT OF P P ---> P X BETWEEN 50-GEV/C AND 400-GEV/C.

Abe, K. ; De Lillo, T. ; Robinson, B. ; et al.
Phys.Rev.Lett. 31 (1973) 1527-1530, 1973.
Inspire Record 81796 DOI 10.17182/hepdata.50301

We present measurements of the invariant cross section for the inclusive reaction p+p→p+X in the region 0.14<|t|<0.38 GeV2, 100<s<750 GeV2, and 0.80<x<0.93.

1 data table

The cross sections are fitted by the formula CONST(C=A)*EXP(SLOPE*T)*(1+CO NST(C=B)/SQRT(S)).


Determination of Triple Regge Couplings from a Study of the Reaction p p -> p X between 50-GeV and 400-GeV

Abe, K. ; De Lillo, T. ; Robinson, B. ; et al.
Phys.Rev.Lett. 31 (1973) 1530, 1973.
Inspire Record 82045 DOI 10.17182/hepdata.21356

We present an analysis, in the framework of the triple Regge model, of our recent experimental results on the reaction p+p→p+X between 50 and 400 GeV.

2 data tables

The cross sections is fitted in the framework of the triple Regge model. The symbols P and R in the (C=...) denote pomeron and reggeon, respectively. For fit I and II the authors used conventional trajectories alpha(P) = 1 +0.25*T, alpha(R) = 0.5 + T. Fit II is restricted to data with (1 - M(P=4)**2/S) > 0.84. In fit III they use alpha(R) = 0.2 + T for the RRP term. Fit IV is like fit I with additional fixed (pion pion P) term.

The cross sections is fitted in the farmework of the triple Regge model. The symbols P and R in teh (C=...) denote pomeron and reggeon, respectively. CONST(C=C) and SLOPE are from the replacement of the RRP term by the exponential one : CONST(C=C)*(SLOPE*(1-x)). See text for detail.