The proton and deuteron F_2 structure function at low Q^2

Tvaskis, V. ; Arrington, J. ; Asaturyan, R. ; et al.
Phys.Rev.C 81 (2010) 055207, 2010.
Inspire Record 844968 DOI 10.17182/hepdata.56742

Measurements of the proton and deuteron $F_2$ structure functions are presented. The data, taken at Jefferson Lab Hall C, span the four-momentum transfer range $0.06 < Q^2 < 2.8$ GeV$^2$, and Bjorken $x$ values from 0.009 to 0.45, thus extending the knowledge of $F_2$ to low values of $Q^2$ at low $x$. Next-to-next-to-leading order calculations using recent parton distribution functions start to deviate from the data for $Q^2<2$ GeV$^2$ at the low and high $x$-values. Down to the lowest value of $Q^2$, the structure function is in good agreement with a parameterization of $F_2$ based on data that have been taken at much higher values of $Q^2$ or much lower values of $x$, and which is constrained by data at the photon point. The ratio of the deuteron and proton structure functions at low $x$ remains well described by a logarithmic dependence on $Q^2$ at low $Q^2$.

62 data tables

Proton and Deuteron F2 structure function for an x value of 0.040, determined via the Rosenbluth separation method. Error is shown without the contribution from radiative corrections.

Proton and Deuteron F2 structure function for an x value of 0.060, determined via the Rosenbluth separation method. Error is shown without the contribution from radiative corrections.

Proton and Deuteron F2 structure function for an x value of 0.080, determined via the Rosenbluth separation method. Error is shown without the contribution from radiative corrections.

More…

Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Simula, S. ; et al.
Nucl.Phys.A 845 (2010) 1-32, 2010.
Inspire Record 846170 DOI 10.17182/hepdata.55369

We report on the measurement of inclusive electron scattering off a carbon target performed with CLAS at Jefferson Laboratory. A combination of three different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous measurements of the inclusive electron scattering off proton and deuteron, which cover a similar continuous two-dimensional region of Q2 and Bjorken variable x, permit the study of nuclear modifications of the nucleon structure. By using these, as well as other world data, we evaluated the F2 structure function and its moments. Using an OPE-based twist expansion, we studied the Q2-evolution of the moments, obtaining a separation of the leading-twist and the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist contributions to the F2 moments exhibits the well known EMC effect, compatible with that discovered previously in x-space. The total higher-twist term in the carbon nucleus appears, although with large systematic uncertainites, to be smaller with respect to the deuteron case for n<7, suggesting partial parton deconfinement in nuclear matter. We speculate that the spatial extension of the nucleon is changed when it is immersed in the nuclear medium.

57 data tables

F2 measurements for a Q**2 of 0.175 GeV**2.

F2 measurements for a Q**2 of 0.225 GeV**2.

F2 measurements for a Q**2 of 0.275 GeV**2.

More…

Inclusive electron scattering from nuclei at x approximately = 1

Arrington, J. ; Anthony, P. ; Arnold, R.G. ; et al.
Phys.Rev.C 53 (1996) 2248-2251, 1996.
Inspire Record 394586 DOI 10.17182/hepdata.25857

The inclusive A(e,e') cross section for $x \simeq 1$ was measured on $~2$H, C, Fe, and Au for momentum transfers $Q~2$ from 1-7 (GeV/c)$~2$. The scaling behavior of the data was examined in the region of transition from y-scaling to x-scaling. Throughout this transitional region, the data exhibit $\xi$-scaling, reminiscent of the Bloom-Gilman duality seen in free nucleon scattering.

3 data tables

No description provided.

No description provided.

No description provided.


Nuclear structure function in carbon near x = 1

The BCDMS collaboration Benvenuti, A.C. ; Bollini, D. ; Camporesi, T. ; et al.
Z.Phys.C 63 (1994) 29-36, 1994.
Inspire Record 374300 DOI 10.17182/hepdata.48235

Data from deep inelastic scattering of 200 GeV muons on a carbon target with squared four-momentum transfer 52 GeV2≤Q2≤200 GeV2 were analysed in the region of the Bjorken variable close tox=1, which is the kinematic limit for scattering on a free nucleon. At this value ofx, the carbon structure function is found to beF2C≈1.2·10−4. Thex dependence of the structure function forx>0.8 is well described by an exponentialF2C∞exp(−sx) withs=16.5±0.6.

5 data tables

No description provided.

Multiplicative factors by which F2 has to be multiplied or divided to allow for a systematic uncertainty in detector resolution.

Multiplicative factors by which F2 has to be multiplied or divided to allow for a systematic uncertainty in the beam energy.

More…

A Comparative study of structure function measurements from hydrogen and deuterium

Bazizi, K. ; Wimpenny, S.J. ;
UCR-DIS-91-02, 1991.
Inspire Record 317333 DOI 10.17182/hepdata.18595

None

34 data tables

NA28 100 GeV data.

NA28 100 GeV data.

NA28 100 GeV data.

More…

A COMBINED ANALYSIS OF SLAC EXPERIMENTS ON DEEP INELASTIC e p AND e d SCATTERING

Whitlow, L.W. ; Bodek, A. ; Rock, Stephen ; et al.
Nucl.Phys.B Proc.Suppl. 16 (1990) 215-216, 1990.
Inspire Record 280954 DOI 10.17182/hepdata.2721

None

44 data tables

No description provided.

No description provided.

No description provided.

More…

Precision measurement of structure function ratios for Li-6, C-12 and Ca-40

The New Muon collaboration Amaudruz, P. ; Arneodo, M. ; Arvidson, A. ; et al.
Z.Phys.C 53 (1992) 73-78, 1992.
Inspire Record 319669 DOI 10.17182/hepdata.14706

The structure function ratiosF2C/F2Li,F2Ca/F2Li andF2Ca/F2C were measured in deep inelastic muonnucleus scattering at an incident muon energy of 90 GeV, covering the kinematic range 0.0085<x<0.6 and 0.8<Q2<17GeV2. The sensitivity of the nuclear structure functions to the size and mean density of the target nucleus is discussed.

3 data tables

Overall normalization error of 0.7%, due to uncertainties in target thickness, not included in the table.

Overall normalization error of 0.8%, due to uncertainties in target thickness, not included in the table.

Overall normalization error of 0.5%, due to uncertainties in target thickness, not included in the table.


Precision measurement of the structure function ratios F2 (He) / F2 (D), F2 (C) / F2 (D) and F2 (Ca) / F2 (D)

The New Muon collaboration Amaudruz, P. ; Arneodo, M. ; Arvidson, A. ; et al.
Z.Phys.C 51 (1991) 387-394, 1991.
Inspire Record 314878 DOI 10.17182/hepdata.14935

We present the structure function ratiosF2He/F2D,F2C/F2D andF2Ca/F2D measured in deep inelastic muon-nucleus scattering at an incident muon momentum of 200 GeV. The kinematic range 0.0035<x<0.65 and 0.5<Q2<90 GeV2 is covered. At lowx the three ratios are significantly smaller than unity and the size of the depletion grows with decreasingx and increasing mass numberA. At intermediatex the ratios show an enhancement of about 2% above unity for C/D and Ca/D, possibly less for He/D. There are indications of someQ2 dependence in the Ca/D data. The integrals of the structure function differencesF2A−F2D are discussed.

3 data tables

No description provided.

No description provided.

No description provided.


The Gottfried sum from the ratio F2(n) / F2(p)

The New Muon collaboration Amaudruz, P. ; Arneodo, M. ; Arvidson, A. ; et al.
Phys.Rev.Lett. 66 (1991) 2712-2715, 1991.
Inspire Record 313931 DOI 10.17182/hepdata.19908

Experimental results obtained at the CERN Super Proton Synchrotron on the structure-function ratio F2n/F2p in the kinematic range 0.004<x<0.8 and 0.4<Q2<190 GeV2, together with the structure function F2d determined from a fit to published data, are used to derive the difference F2p(x)-F2n(x). The value of the Gottfried sum F(F2p-F2n)dx/x=0.240±0.016 is below the quark-parton-model expectation of 1/3.

1 data table

No description provided.


Measurement of the Nucleon Structure Function in Iron Using 215-GeV and 93-GeV Muons

Clark, A.R. ; Johnson, K.J. ; Kerth, L.T. ; et al.
Phys.Rev.Lett. 51 (1983) 1826, 1983.
Inspire Record 191249 DOI 10.17182/hepdata.23473

This Letter presents measurements of the nucleon structure function F2(x,Q2) based on the deep-inelastic scattering of 215- and 93-GeV muons in the iron multimuon spectrometer at Fermilab. With use of a lowest-order QCD calculation, a value of ΛLO=230±40(stat.)±80(syst.) MeV/c is found.

7 data tables

No description provided.

No description provided.

No description provided.

More…