Inclusive $\pi^0$ and Eta0 Production in $\pi^- p$ Interactions at 360-{GeV}/$c$

The NA27 & LEBC-EHS collaborations Aguilar-Benitez, M. ; Bailly, J.L. ; Baland, J.F. ; et al.
Z.Phys.C 34 (1987) 419, 1987.
Inspire Record 234876 DOI 10.17182/hepdata.15777

Theπ0 andη0 production is studied inπ−p interactions at 360 GeV/c. The cross section forπ0 production in the forward hemisphere (X>0) isσ(π0)=(49.7 ± 1.0 ± 1.1) mb and for η withX>0.1,Nch>2,σ(η0)=(3.1 ± 0.5) mb. The ratio of theπ0 toη0 cross section forX>0.1,Nch>2 isσ(π0)/σ(η0). Results on FeynmanX andpT distributions are presented. The data were obtained using the European Hybrid Spectrometer EHS and the bubble chamber LEBC at CERN.

6 data tables
More…

J / psi production versus transverse momentum and rapidity in p+p collisions at s**(1/2) = 200-GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 232002, 2007.
Inspire Record 731611 DOI 10.17182/hepdata.57311

J/Psi production in p+p collisions at sqrt(s) = 200 GeV has been Measured in the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over a rapidity range of -2.2 < y < 2.2 and a transverse momentum range of 0 < pT < 9 GeV/c. The statistics available allow a detailed measurement of both the pT and rapidity distributions and are sufficient to constrain production models. The total cross section times branching ratio determined for J/Psi production is B_{ll} sigma_pp^J/psi = 178 +/- 3(stat) +/- 53(syst) +/- 18(norm) nb.

6 data tables

J/PSI differential cross section, times dilepton branching ratio, versus transverse momentum PT, at mid rapidity : -0.35<y<0.35.

J/PSI differential cross section, times dilepton branching ratio, versus transverse momentum PT, at forward rapidities : absolute value of y belongs to [1.2;2.2].

Mean PT^2 value at mid rapidities : -0.35<y<0.35 The mean PT is obtained with a phenomonological fit of the J/PSI distribution in PT of the form (1/(2*PI*PT))*D(SIG)/DPT = A ( 1+(PT/B)^2)^-6 .The systematic error includes the incertainty from the maximum shape deviation permitted by the point-to-point correlated errors and from allowing the exponent of the fit fonctionto be a free parameter.

More…