Scattering of positrons and electrons from protons

Bartel, W. ; Dudelzak, B. ; Krehbiel, H. ; et al.
Phys.Lett.B 25 (1967) 242-245, 1967.
Inspire Record 1389651 DOI 10.17182/hepdata.29449

The ration R = σ(e + = p)/σ(e − + p) of the elastic scattering cross section of positrons and electrons on protons was measured at momentum transfers of 11.66 fm −2 and 35.1 fm −2 . The results are consistent with R = 1.

1 data table

No description provided.


Five-pion final state in p p annihilations at 0.70 to 1.1 GeV/c

Burns, R.R. ; Condon, P.E. ; Donahue, J. ; et al.
Nucl.Phys.B 85 (1975) 337-353, 1975.
Inspire Record 1392678 DOI 10.17182/hepdata.32116

Results are reported on the reaction p p → π + π + π − π − π 0 at six lab momenta spanning the region from 0.686 to 1.098 GeV/ c . The cross section for this process drops from 20.3 ± 1.2 mb at 0.686 GeV/ c to 13 1.0 mb at 1.098 GeV/ c . Resonance production is determined by means of a model which includes Bose symmetrization, Breit-Wigner amplitudes and Bose-Einstein correlations for the like-charged pion pairs in the nonresonant part of the amplitude. The likelihood fit to the resonance channels yields about 0.8% ηππ , 12% ϱ ± πππ , 2% f πππ , 8% ω ππ , 22% ϱ ± ϱ 0 π , 13% ωϱ 0 and 9% ω f with errors on the order of a few percent. Several percent A 1 ± ππ and X(1440) π were also needed to obtain good fits. The ϱ 0 πππ and ϱ 0 ϱ 0 π channels as well as A 2 ππ and A 1 0 ππ are consistent with zero. Reasonable fits to the mass distributions are obtained. Production angular distributions are found to be essentially uniform. The angular correlations between pion pairs are approximately fit by the simple model of resonance production with Bose symmetrization.

2 data tables

Axis error includes +- 0.0/0.0 contribution.

Axis error includes +- 0.0/0.0 contribution.


Precision measurements of $g_1$ of the proton and the deuteron with 6 GeV electrons

The CLAS collaboration Prok, Y. ; Bosted, P. ; Kvaltine, N. ; et al.
Phys.Rev.C 90 (2014) 025212, 2014.
Inspire Record 1292133 DOI 10.17182/hepdata.64411

The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative QCD, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

4 data tables

Results for G1(P)/F1(P) for the proton in bins of (XB;Q**2), along with average kinematic values and correction factors for each bin. All values are averaged over the event distribution.

Results for G1(DEUT)/F1(DEUT) for the deuteron in bins of (XB;Q**2), along with average kinematic values and correction factors for each bin. All values are averaged over the event distribution.

Results for G1(P)/F1(P) for the proton in bins of (W;Q**2), along with average kinematic values and correction factors for each bin. All values are averaged over the event distribution.

More…

Measurement of the invariant mass distributions for the pp -> ppeta' reaction at excess energy of Q = 16.4 MeV

Klaja, P. ; Moskal, P. ; Czerwinski, E. ; et al.
Phys.Lett.B 684 (2010) 11-16, 2010.
Inspire Record 843930 DOI 10.17182/hepdata.55690

The proton-proton and proton-eta' invariant mass distributions have been determined for the pp -> ppeta' reaction at an excess energy of Q = 16.4 MeV. The measurement was carried out using the COSY-11 detector setup and the proton beam of the cooler synchrotron COSY. The shapes of the determined invariant mass distributions are similar to those of the pp -> ppeta reaction and reveal an enhancement for large relative proton-proton momenta. This result, together with the fact that the proton-eta interaction is much stronger that the proton-eta' interaction, excludes the hypothesis that the observed enhancement is caused by the interaction between the proton and the meson.

2 data tables

Differential cross section as a function of the squared invariant mass of the proton-proton system.

Differential cross section as a function of the squared invariant mass of the proton-etaprime system.


Study of the reaction $\gamma p\to p\pi^0\eta$

The CB-ELSA collaboration Horn, I. ; Anisovich, A.V. ; Anton, G. ; et al.
Eur.Phys.J.A 38 (2008) 173-186, 2008.
Inspire Record 789175 DOI 10.17182/hepdata.54384

The reaction $\gamma p\to p\pi^0\eta$ has been studied with the CBELSA detector at the tagged photon beam of the Bonn electron stretcher facility. The reaction shows contributions from $\Delta^+(1232)\eta$, $N(1535)^+\pi^0$ and $pa_0(980)$ as intermediate states. A partial wave analysis suggests that the reaction proceeds via formation of six $\Delta$ resonances, $\Delta(1600)P_{33}$, $\Delta(1920)P_{33}$, $\Delta(1700)D_{33}$, $\Delta(1940)D_{33}$, $\Delta(1905)F_{35}$, $\Delta(2360)D_{33}$, and two nucleon resonances $N(1880)P_{11}$ and $N(2200)P_{13}$, for which pole positions and decay branching ratios are given.

7 data tables

Total cross section for GAMMA P --> P PI0 ETA.

Differential cross sections as a function of the angles of the individual final state particles for the W range 1.7 to 1.9 GeV.. Errors shown are statistical only.

Differential cross sections as a function of the angles of the individual final state particles for the W range 1.9 to 2.1 GeV.. Errors shown are statistical only.

More…

Invariant mass distributions for the pp to p p eta reaction at Q=10 MeV

Moskal, P. ; Czyżykiewicz, R. ; Czerwiński, E. ; et al.
Eur.Phys.J.A 43 (2010) 131-136, 2010.
Inspire Record 839339 DOI 10.17182/hepdata.54192

Proton-proton and proton-eta invariant mass distributions and the total cross section for the pp to pp eta reaction have been determined near the threshold at an excess energy of Q=10 MeV. The experiment has been conducted using the COSY-11 detector setup and the cooler synchrotron COSY. The determined invariant mass spectra reveal significant enhancements in the region of low proton-proton relative momenta, similarly as observed previously at higher excess energies of Q=15.5 MeV and Q= 40MeV.

3 data tables

Total cross section determined from the integral of the invariant mass distribution.

Distribution of the square of the invariant mass of the proton-proton system.

Distribution of the square of the invariant mass of the proton-eta system.


Cross sections and Rosenbluth separations in 1H(e, e'K+)Lambda up to Q2=2.35 GeV2

The Jefferson Lab Hall A collaboration Coman, M. ; Markowitz, P. ; Aniol, K.A. ; et al.
Phys.Rev.C 81 (2010) 052201, 2010.
Inspire Record 837422 DOI 10.17182/hepdata.54197

The kaon electroproduction reaction 1H(e,e'K+)Lambda was studied as a function of the virtual-photon four-momentum, Q2, total energy, W, and momentum transfer, t, for different values of the virtual- photon polarization parameter. Data were taken at electron beam energies ranging from 3.40 to 5.75 GeV. The center of mass cross section was determined for 21 kinematics corresponding to Q2 of 1.90 and 2.35 GeV2 and the longitudinal, sigmaL, and transverse, sigmaT, cross sections were separated using the Rosenbluth technique at fixed W and t. The separated cross sections reveal a flat energy dependence at forward kaon angles not satisfactorily described by existing electroproduction models. Influence of the kaon pole on the cross sections was investigated by adopting an off-shell form factor in the Regge model which better describes the observed energy dependence of sigmaT and sigmaL.

11 data tables

Measured values of the separated cross section at Q**2 = 2.35 GeV**2 and W = 1.85 GeV.. Errors contain both statistics and systematics.

Measured values of the separated cross section at Q**2 = 1.90 GeV**2.. Errors contain both statistics and systematics.

Measured values of the separated cross section at Q**2 = 2.35 GeV**2.. Errors contain both statistics and systematics.

More…

Photoproduction of $\eta$ and $\eta\prime$ Mesons off Protons

The CBELSA/TAPS collaboration Crede, V. ; McVeigh, A. ; Anisovich, A.V. ; et al.
Phys.Rev.C 80 (2009) 055202, 2009.
Inspire Record 836340 DOI 10.17182/hepdata.53229

Total and differential cross sections for $\eta$ and $\eta ^\prime$ photoproduction off the proton have been determined with the CBELSA/TAPS detector for photon energies between 0.85 and 2.55 GeV. The $\eta$ mesons are detected in their two neutral decay modes, $\eta\to\gamma\gamma$ and $\eta\to 3\pi^0\to 6\gamma$, and for the first time, cover the full angular range in $\rm cos \theta_{cm}$ of the $\eta$ meson. These new $\eta$ photoproduction data are consistent with the earlier CB-ELSA results. The $\eta ^\prime$ mesons are observed in their neutral decay to $\pi^0\pi^0\eta\to 6\gamma$ and also extend the coverage in angular range.

56 data tables

Differential cross section for ETA production at incident photon energy 0.850 to 0.900 GeV.

Differential cross section for ETA production at incident photon energy 0.900 to 0.950 GeV.

Differential cross section for ETA production at incident photon energy 0.950 to 1.000 GeV.

More…

Differential cross sections for the reactions gamma p-> p eta and gamma p -> p eta-prime

The CLAS collaboration Williams, M. ; Krahn, Z. ; Applegate, D. ; et al.
Phys.Rev.C 80 (2009) 045213, 2009.
Inspire Record 830257 DOI 10.17182/hepdata.52983

High-statistics differential cross sections for the reactions gamma p -> p eta and gamma p -> p eta-prime have been measured using the CLAS at Jefferson Lab for center-of-mass energies from near threshold up to 2.84 GeV. The eta-prime results are the most precise to date and provide the largest energy and angular coverage. The eta measurements extend the energy range of the world's large-angle results by approximately 300 MeV. These new data, in particular the eta-prime measurements, are likely to help constrain the analyses being performed to search for new baryon resonance states.

104 data tables

Differential cross section for the W range 1.68 to 1.69 GeV.

Differential cross section for the W range 1.69 to 1.70 GeV.

Differential cross section for the W range 1.70 to 1.71 GeV.

More…

Electroproduction of $\phi(1020)$ mesons at $1.4\leq Q^2\leq$ 3.8 GeV$^2$ measured with the CLAS spectrometer

The CLAS collaboration Santoro, J.P. ; Smith, E.S. ; Garc con, M. ; et al.
Phys.Rev.C 78 (2008) 025210, 2008.
Inspire Record 781974 DOI 10.17182/hepdata.50913

Electroproduction of exclusive $\phi$ vector mesons has been studied with the CLAS detector in the kinematical range $1.6\leq Q^2\leq 3.8$ GeV$^{2}$, $0.0\leq t^{\prime}\leq 3.6$ GeV$^{2}$, and $2.0\leq W\leq 3.0$ GeV. The scaling exponent for the total cross section as $1/(Q^2+M_{\phi}^2)^n$ was determined to be $n=2.49\pm 0.33$. The slope of the four-momentum transfer $t'$ distribution is $b_{\phi}=0.98 \pm 0.17$ GeV$^{-2}$. The data are consistent with the assumption of s-channel helicity conservation (SCHC). Under this assumption, we determine the ratio of longitudinal to transverse cross sections to be $R=0.86 \pm 0.24$. A 2-gluon exchange model is able to reproduce the main features of the data.

5 data tables

Axis error includes +- 18.6/18.6 contribution.

Axis error includes +- 18.6/18.6 contribution.

Axis error includes +- 18.6/18.6 contribution.

More…