QCD analyses and determinations of alpha(s) in e+ e- annihilation at energies between 35-GeV and 189-GeV.

The JADE & OPAL collaborations Pfeifenschneider, P. ; Biebel, O. ; Movilla Fernandez, P.A. ; et al.
Eur.Phys.J.C 17 (2000) 19-51, 2000.
Inspire Record 513337 DOI 10.17182/hepdata.12882

We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.

80 data tables

Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.

Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.

Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.

More…

A study of event shapes and determinations of alpha(s) using data of e+ e- annihilations at s**(1/2) = 22-GeV to 44-GeV.

The JADE collaboration Movilla Fernandez, P.A. ; Biebel, O. ; Bethke, S. ; et al.
Eur.Phys.J.C 1 (1998) 461-478, 1998.
Inspire Record 447560 DOI 10.17182/hepdata.43431

Data recorded by the JADE experiment at the PETRA e^+e^- collider were used to measure the event shape observables thrust, heavy jet mass, wide and total jet broadening and the differential 2-jet rate in the Durham scheme. For the latter three observables, no experimental results have previously been presented at these energies. The distributions were compared with resummed QCD calulations (O(alpha_s^2)+NLLA), and the strong coupling constant alpha_s(Q) was determined at different energy scales Q=sqrt{s}. The results, \alpha_s(22 GeV) = 0.161 ^{+0.016}_{-0.011}, \alpha_s(35 GeV) = 0.143 ^{+0.011}_{-0.007}, \alpha_s(44 GeV) = 0.137 ^{+0.010}_{-0.007}, are in agreement with previous combined results of PETRA albeit with smaller uncertainties. Together with corresponding data from LEP, the energy dependence of alpha_s is significantly tested and is found to be in good agreement with the QCD expectation. Similarly, mean values of the observables were compared to analytic QCD predictions where hadronisation effects are absorbed in calculable power corrections.

13 data tables

The errors are statistical only.

The last row corresponds to the mean value.

The last row corresponds to the mean value.

More…

Precise Measurement of Total Cross-Sections for the Process e+ e- ---> Multi-Hadrons in the Center-Of-Mass Energy Range Between 12.0-GeV and 36.4-GeV

The JADE collaboration Bartel, W. ; Becker, L. ; Bowdery, C. ; et al.
Phys.Lett.B 129 (1983) 145-152, 1983.
Inspire Record 191159 DOI 10.17182/hepdata.6639

The total cross section for the process e + e − → hadrons has been measured in the CM energy range between 12.0 and 36.4 GeV using the JADE detector with a typical systematic error of ±3%. The ratio R( σ( ee → hadrons ) σ pt ) is found to be constant over this range with an average value of 3.97 ± 0.05 (statistical and point-to-point systematic error) ± 0.10 (normalization error). The data were compared with the standard electro-weak interaction model including QCD corrections.

2 data tables

ERRORS ARE STATISTICAL PLUS POINT TO POINT SYSTEMATICS. THERE IS AN ADDITIONAL 2.4 PCT OVERALL NORMALIZATION ERROR.

No description provided.


A Determination of Quark Weak Couplings at {PETRA} Energies

The JADE collaboration Bartel, W. ; Cords, D. ; Dittmann, P. ; et al.
Phys.Lett.B 101 (1981) 361, 1981.
Inspire Record 164812 DOI 10.17182/hepdata.31227

Data on hadron production by e + e − annihilation at c.m. energies between 12 and 36.6 GeV have been collected using the JADE detector. They have been analysed in terms of single-photon and weak neutral-current exchange assuming production of quark-antiquark pairs with only d, u, s, c and b quarks to produce values for the quark weak neutral-current couplings. A further analysis in terms of the Glashow-Salam-Weinberg theory produced the result, sin 2 θ W = 0.22 ± 0.08 . The theory has therefore been tested in a new energy domain and within the context of the neutral weak couplings of the first, second and third generation quarks.

2 data tables

No description provided.

WIDTH(Z) = 2.5 GEV WAS ASSUMED. CONST(N=SIN2TW) WAS DETERMINED FROM RATIO(HADRONS/MU). FIRST ORDER QCD.


A Measurement of the Total Cross-section and a Study of Inclusive Muon Production for the Process $e^+ e^- \to$ Hadrons in the Energy Range Between 39.79-{GeV} and 46.78-{GeV}

The JADE collaboration Bartel, W. ; Becker, L. ; Cords, D. ; et al.
Phys.Lett.B 160 (1985) 337-342, 1985.
Inspire Record 216799 DOI 10.17182/hepdata.30375

The total cross section and the inclusive muon cross section for the process e + e − → hadrons have been measured in the center of mass energy range between 39.79 and 46.78 GeV. The ratio R shows no significant structure. It has an average value of 4.13±0.08±0.14. An upper limit is set on the production of narrow resonances. Limits are obtained for pair-produced heavy quarks. The data are compared with the standard electroweak interaction model including QCD corrections taking into account the five known types of quarks. Upper limits are given for a possible structure of quarks and for effects of color octet leptons.

1 data table

Figure 1 also shows energy scan of 'R'.


Search for Narrow Resonances in $e^+ e^-$ Annihilation at $c$.m. Energies Between 33.0-{GeV} and 36.72-{GeV}

The JADE collaboration Bartel, W. ; Cords, D. ; Dittmann, P. ; et al.
Phys.Lett.B 100 (1981) 364-366, 1981.
Inspire Record 164319 DOI 10.17182/hepdata.45224

A search for narrow resonances in e + e − annihilation between 33.00 and 36.72 GeV is reported. No evidence is found for the existence of such states. The 90% confidence upper limit on the integrated resonance cross section is determined to be 28 nb MeV, a value significantly below that expected for the lowest t t bound state.

2 data tables

AVERAGE R VALUE THROUGHOUT ENERGY RANGE. SYSTEMATIC ERROR IS CONSERVATIVE AND WILL BE IMPROVED.

R VALUES AT 20 MEV STEPS. DATA TAKEN FROM TABLE IN THE PREPRINT.


Search for Narrow Resonances in $e^+ e^-$ Annihilation at c.m. Energies Between 29.90-{GeV} and 31.46-{GeV}

The JADE collaboration Bartel, W. ; Cords, D. ; Dittmann, P. ; et al.
Phys.Lett.B 91 (1980) 152-154, 1980.
Inspire Record 152290 DOI 10.17182/hepdata.27258

A search for narrow resonances in e + e − annihilation at c.m. energies between 29.90 and 31.46 GeV provides no evidence for the existence of such states. The 90% confidence upper limit on the integrated resonance cross section is 38 nb MeV, significantly below the value expected for the lowest (t,t̄) bound state.

1 data table

No description provided.


Total Cross-Section for Hadron Production by e+ e- Annihilation at PETRA Energies

The JADE collaboration Bartel, W. ; Canzler, T. ; Cords, D. ; et al.
Phys.Lett.B 88 (1979) 171-176, 1979.
Inspire Record 142874 DOI 10.17182/hepdata.27277

The cross section for the process e + e − → multihadrons has been measured at the highest PETRA energies. We measure R (the total cross section in units of the point-like e + e - → μ + μ - cross section) to be 2.9 ± 0.7, 4.0 ± 0.5, 4.6 ± 0.4 and 4.2 ± 0.6 at s of 22, 27.7, 30 and 31.6 GeV, respectively. The observed average multiplicity, together with existing low energy data, indicate a rapid increase in multiplicity with increasing energy.

2 data tables

STATISTICAL ERRORS ONLY. RADIATIVE CORRECTIONS APPLIED AND TAU HEAVY LEPTON CONTRIBUTION SUBTRACTED. AVERAGE VALUE OF R FOR ALL THESE DATA IS 4.14 +- 0.26.

AVERAGE CHARGE MULTIPLICITY. ADDITIONAL, SYSTEMATIC ERROR IS ABOUT 1.5.