First Measurements of Hadronic Decays of the $Z$ Boson

The MARK-II collaboration Abrams, G.S. ; Adolphsen, Chris ; Aleksan, R. ; et al.
Phys.Rev.Lett. 63 (1989) 1558, 1989.
Inspire Record 282670 DOI 10.17182/hepdata.20044

We have observed hadronic final states produced in the decays of Z bosons. In order to study the parton structure of these events, we compare the distributions in sphericity, thurst, aplanarity, and number of jets to the predictions of several QCD-based models and to data from lower energies. The data and models agree within the present statistical precision.

5 data tables

Corrected event shape distributions.

Corrected event shape distributions.

Corrected event shape distributions.

More…

Studies of Jet Production Rates in $e^+ e^-$ Annihilation at $e$({CM}) = 29-{GeV}

Bethke, S. ; Abrams, G. ; Adolphsen, C.E. ; et al.
Z.Phys.C 43 (1989) 325, 1989.
Inspire Record 277772 DOI 10.17182/hepdata.15472

Production rates of multijet hadronic final states are studied ine+e− annihilation at 29 GeV center of mass energy. QCD shower model calculations with exact first order matrix element weighting at the first gluon vertex are capable of reproducing the observed multijet event rates over a large range of jet pair masses. The method used to reconstruct jets is well suited for directly comparing experimental jet rates with parton rates calculated in perturbative QCD. Evidence for the energy dependene of αs is obtained by comparing the observed production rates of 3-jet events with results of similar studies performed at higher center of mass energies.

2 data tables

Observed production rates relative to the total hadronic cross section.

Production rates corrected for fragmentation, initial state radiation and detector effects.


A measurement of the b-quark mass from hadronic Z decays.

The ALEPH collaboration Barate, R. ; Decamp, D. ; Ghez, Philippe ; et al.
Eur.Phys.J.C 18 (2000) 1-13, 2000.
Inspire Record 531468 DOI 10.17182/hepdata.49909

Hadronic Z decay data taken with the ALEPH detector at LEP1 are used to measure the three-jet rate as well as moments of various event-shape variables. The ratios of the observables obtained from b-tagged events and from an inclusive sample are determined. The mass of the b quark is extracted from a fit to the measured ratios using a next-to-leading order prediction including mass effects. Taking the first moment of the y3 distribution, which is the observable with the smallest hadronization corrections and systematic uncertainties, the result is: mb(MZ) = [3.27+-0.22(stat) +-0.22(exp)+-0.38(had)+-0.16(theo)] GeV/c2. The measured ratio is alternatively employed to test the flavour independence of the strong coupling constant for b and light quarks.

1 data table

No description provided.


A measurement of the QCD colour factors and a limit on the light gluino.

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Z.Phys.C 76 (1997) 1-14, 1997.
Inspire Record 440051 DOI 10.17182/hepdata.34162

Using data collected from 1992 to 1995 with the ALEPH detector at LEP, a measurement of the colour factor ratios CA/CF and TF /CF and the strong coupling constant αs = CFαs(MZ)/(2π) has been performed by fitting theoretical predictions simultaneously to the measured differential two-jet rate and angular distributions in four-jet events. The result is found to be in excellent agreement with QCD, {fx4-1} Fixing CA/CF and TF/CF to the QCD values permits a determination of αs(MZ) and ηf, the number of active flavours. With this measurement the existence of a gluino with mass below 6.3 GeV/c2 is excluded at 95% confidence level.

3 data tables

Fit A: using all kinematical distributions. NC, CF, and TF are the color factors for SU(3) group, NF is the number of the active flavors.

Fit B: using all kinematical distributions, but QCD magnitudes for color factors are used: FA(DEF=NC/CF)) = 2.25 and TF/CF = 0.375. NC, CF, and TF are the color factors for SU(3) group, NF is the number of the active flavors.

Fit C: the QCD magnitudes for color factors and NF = 5 are used.


Test of the flavor independence of alpha-s

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 355 (1995) 381-393, 1995.
Inspire Record 393416 DOI 10.17182/hepdata.48177

Using about 950000 hadronic events collected during 1991 and 1992 with the ALEPH detector, the ratios r b = α s b α s udsc and r uds = α s uds α s cb have been measured in order to test the flavour independence of the strong coupling constant α s . The analysis is based on event-shape variables using the full hadronic sample, two b -quark samples enriched by lepton tagging and lifetime tagging, and a light-quark sample enriched by lifetime antitagging. The combined results are r b = 1.002±0.023 and r uds = 0.971 ± 0.023.

1 data table

No description provided.


First measurement of the quark to photon fragmentation function

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Z.Phys.C 69 (1996) 365-378, 1996.
Inspire Record 398193 DOI 10.17182/hepdata.12261

Earlier measurements at LEP of isolated hard photons in hadronic Z decays, attributed to radiation from primary quark pairs, have been extended in the ALEPH experiment to include hard photon productioninside hadron jets. Events are selected where all particles combine democratically to form hadron jets, one of which contains a photon with a fractional energyz≥0.7. After statistical subtraction of non-prompt photons, the quark-to-photon fragmentation function,D(z), is extracted directly from the measured 2-jet rate. By taking into account the perturbative contributions toD(z) obtained from anO(ααs) QCD calculation, the unknown non-perturbative component ofD(z) is then determined at highz. Provided due account is taken of hadronization effects nearz=1, a good description of the other event topologies is then found.

16 data tables

2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).

2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).

2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).

More…

Properties of hadronic Z decays and test of QCD generators

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Z.Phys.C 55 (1992) 209-234, 1992.
Inspire Record 334577 DOI 10.17182/hepdata.1420

Distributions are presented of event shape variables, jet roduction rates and charged particle momenta obtained from 53 000 hadronicZ decays. They are compared to the predictions of the QCD+hadronization models JETSET, ARIADNE and HERWIG, and are used to optimize several model parameters. The JETSET and ARIADNE coherent parton shower (PS) models with running αs and string fragmentation yield the best description of the data. The HERWIG parton shower model with cluster fragmentation fits the data less well. The data are in better agreement with JETSET PS than with JETSETO(αS2) matrix elements (ME) even when the renormalization scale is optimized.

41 data tables

Sphericity distribution.

Sphericity distribution.

Aplanarity distribution.

More…

Measurement of the strong coupling constant alpha-s from global event shape variables of hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 255 (1991) 623-633, 1991.
Inspire Record 301661 DOI 10.17182/hepdata.29491

An analysis of global event-shape variables has been carried out for the reaction e + e − →Z 0 →hadrons to measure the strong coupling constant α s . This study is based on 52 720 hadronic events obtained in 1989/90 with the ALEPH detector at the LEP collider at energies near the peak of the Z-resonance. In order to determine α s , second order QCD predictions modified by effects of perturbative higher orders and hadronization were fitted to the experimental distributions of event-shape variables. From a detailed analysis of the theoretical uncertainties we find that this approach is best justified for the differential two-jet rate, from which we obtain α s ( M Z 2 ) = 0.121 ± 0.002(stat.)±0.003(sys.)±0.007(theor.) using a renormalization scale ω = 1 2 M Z . The dependence of α s ( M Z 2 ) on ω is parameterized. For scales m b <ω< M Z the result varies by −0.012 +0.007 .

1 data table

The second DSYS error is the theoretical error.


Measurement of alpha-s in hadronic Z decays using all orders resummed predictions

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 284 (1992) 163-176, 1992.
Inspire Record 333334 DOI 10.17182/hepdata.48421

None

1 data table

Three different methods are used for extraction Alphas value (see text for details). Systematical errors with C=HADR and C=THEOR are due to hadronization correction and theoretical uncertainties.


Analysis of Multi - Jet Final States in $e^+ e^-$ Annihilation

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Phys.Lett.B 214 (1988) 286-294, 1988.
Inspire Record 261486 DOI 10.17182/hepdata.29878

Data accumulated by the TASSO detector across the whole range of energies spanned at PETRA, 12⩽ s ⩽46.8 GeV , have been analysed in terms of cluster algorithms. Using parameters optimised at 35 GeV CM energy, three perturbative QCD+fragmentation models were compared with the data. The O( α s 2 ) model gives too few 4,5- cluster events, implying that higher order QCD contributions are required to describe the data. The parton cascade model, incorporating many orders in perturbation theory, gives a better description of the rates of ⩾ 4 clusters, but shows a lack of hard gluon emission by giving too few 3-, and too many 2-cluster events. When hard gluon emission is taken into account, by the cascade model incorporating the O( α s ) matrix element, all cluster rates are reproduced well. All the models describe the trend of the evolution of the cluster rates between 〈 s 〉 = 14 and 43.8 GeV. We find that the rate of 3-jet events seen in the data decreases as s increases in a manner consistent with the Q 2 dependence of α s as predicted by QCD.

3 data tables

No description provided.

No description provided.

Corrected 3 jet rate with YCUT=0.08.