Production of charged pions, kaons and protons in e+e- annihilations into hadrons at sqrt{s} = 10.54 GeV

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 88 (2013) 032011, 2013.
Inspire Record 1238276 DOI 10.17182/hepdata.62088

Inclusive production cross sections of $\pi^\pm$, $K^\pm$ and $p\bar{p}$ per hadronic $e^+e^-$ annihilation event in $e^+e^-$ are measured at a center-of-mass energy of 10.54 GeV, using a relatively small sample of very high quality data from the BaBar experiment at the PEP-II $B$-factory at the SLAC National Accelerator Laboratory. The drift chamber and Cherenkov detector provide clean samples of identified $\pi^\pm$, $K^\pm$ and $p\bar{p}$ over a wide range of momenta. Since the center-of-mass energy is below the threshold to produce a $B\bar{B}$ pair, with $B$ a bottom-quark meson, these data represent a pure $e^+e^- \rightarrow q\bar{q}$ sample with four quark flavors, and are used to test QCD predictions and hadronization models. Combined with measurements at other energies, in particular at the $Z^0$ resonance, they also provide precise constraints on the scaling properties of the hadronization process over a wide energy range.

4 data tables

Differential cross section for prompt PI+-, K+- and PBAR/P production.

Differential cross section for conventional PI+-, K+- and PBAR/P production.

Integrated cross sections for prompt PI+-, K+- and PBAR/P production. The second (sys) error is the uncertainty due to the model dependence of the extrapolation.

More…

Production of pi+, pi-, K+, K-, p and anti-p in light (uds), c and b jets from Z0 decays.

The SLD collaboration Abe, Koya ; Abe, Kenji ; Abe, T. ; et al.
Phys.Rev.D 69 (2004) 072003, 2004.
Inspire Record 630327 DOI 10.17182/hepdata.22177

We present improved measurements of the differential production rates of stable charged particles in hadronic Z0 decays, and of charged pions, kaons and protons identified over a wide momentum range using the SLD Cherenkov Ring Imaging Detector. In addition to flavor-inclusive Z0 decays, measurements are made for Z0 decays into light (u, d, s), c and b primary flavors, selected using the upgraded Vertex Detector. Large differences between the flavors are observed that are qualitatively consistent with expectations based upon previously measured production and decay properties of heavy hadrons. These results are used to test the predictions of QCD in the Modified Leading Logarithm Approximation, with the ansatz of Local Parton-Hadron Duality, and the predictions of three models of the hadronization process. The light-flavor results provide improved tests of these predictions, as they do not include the contribution of heavy-hadron production and decay; the heavy-flavor results provide complementary model tests. In addition we have compared hadron and antihadron production in light quark (as opposed to antiquark) jets. Differences are observed at high momentum for all three charged hadron species, providing direct probes of leading particle effects, and stringent constraints on models.

11 data tables

Production rates of all stable charged particles. The statistical and systematic errors are shown separately for the momentum distribution. They are combined in quadrature for the other two distributions. The first DSYS error is due tothe uncertainty in the track finding efficiency and the second DSYS error is th e rest of the systematic error.

The charged pion fraction and differential production rate per hadronic Z0 decay.

The charged kaon fraction and differential production rate per hadronic Z0 decay.

More…

Charged and Identified Particles in the Hadronic Decay of W Bosons and in e+e- -> q qbar from 130 to 200 GeV

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 18 (2000) 203-228, 2000.
Inspire Record 526164 DOI 10.17182/hepdata.43294

Inclusive distributions of charged particles in hadronic W decays are experimentally investigated using the statistics collected by the DELPHI experiment at LEP during 1997, 1998 and 1999, at centre-of-mass energies from 183 to around 200 GeV. The possible effects of interconnection between the hadronic decays of two Ws are not observed. Measurements of the average multiplicity for charged and identified particles in q qbar and WW events at centre-of-mass energies from 130 to 200 GeV and in W decays are presented. The results on the average multiplicity of identified particles and on the position xi^* of the maximum of the xi_p = -log(2p/sqrt(s)) distribution are compared with predictions of JETSET and MLLA calculations.

16 data tables

Corrected multiplicites and dispersions of charged particles produced in hadronic decays from QQBAR events. The 200 GeV results are a weighted average fromthe 192, 196 and 200 GeV data.

Average multiplicities of identified hadrons produced in hadronic decays from QQBAR events.

Corrected multiplicites and dispersions of charged particles produced in fully hadronic W decays from two W 4Q and 2Q events.

More…

pi+-, K+-, p and anti-p production in Z0 --> q anti-q, Z0 --> b anti-b, Z0 --> u anti-u, d anti-d, s anti-s.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 5 (1998) 585-620, 1998.
Inspire Record 473409 DOI 10.17182/hepdata.49385

The DELPHI experiment at LEP uses Ring Imaging Cherenkov detectors for particle identification. The good understanding of the RICH detectors allows the identification of charged pions, kaons and proto

39 data tables

Mean particle multiplicities for Z0-->Q-QBAR events. The second systematic (DSYS) error is due to the extrapolation of the differential distributions to the full kinematic range.

Mean particle multiplicities for Z0-->B-BBAR events. The second systematic (DSYS) error is due to the extrapolation of the differential distributions to the full kinematic range.

Mean particle multiplicities for Z0-->(U-UBAR,D-DBAR,S-SBAR) events. The second systematic (DSYS) error is due to the extrapolation of the differential distributions to the full kinematic range.

More…

Production of pi+, K+, K0, K*0, Phi, p and Lambda0 in hadronic Z0 decays.

The SLD collaboration Abe, K. ; Abe, T. ; Akagi, T. ; et al.
Phys.Rev.D 59 (1999) 052001, 1999.
Inspire Record 469925 DOI 10.17182/hepdata.40518

We have measured the differential production cross sections as a function of scaled momentum x_p=2p/E_cm of the identified hadron species pi+, K+, K0, K*0, phi, p, Lambda0, and of the corresponding antihadron species in inclusive hadronic Z0 decays, as well as separately for Z0 decays into light (u, d, s), c and b flavors. Clear flavor dependences are observed, consistent with expectations based upon previously measured production and decay properties of heavy hadrons. These results were used to test the QCD predictions of Gribov and Lipatov, the predictions of QCD in the Modified Leading Logarithm Approximation with the ansatz of Local Parton-Hadron Duality, and the predictions of three fragmentation models. Ratios of production of different hadron species were also measured as a function of x_p and were used to study the suppression of strange meson, strange and non-strange baryon, and vector meson production in the jet fragmentation process. The light-flavor results provide improved tests of the above predictions, as they remove the contribution of heavy hadron production and decay from that of the rest of the fragmentation process. In addition we have compared hadron and antihadron production as a function of x_p in light quark (as opposed to antiquark) jets. Differences are observed at high x_p, providing direct evidence that higher-momentum hadrons are more likely to contain a primary quark or antiquark. The differences for pseudoscalar and vector kaons provide new measurements of strangeness suppression for high-x_p fragmentation products.

35 data tables

Charged pion fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).

Charged kaon fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).

Proton fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).

More…

Studies of quantum chromodynamics with the ALEPH detector

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Phys.Rept. 294 (1998) 1-165, 1998.
Inspire Record 428072 DOI 10.17182/hepdata.47582

Previously published and as yet unpublished QCD results obtained with the ALEPH detector at LEP1 are presented. The unprecedented statistics allows detailed studies of both perturbative and non-perturbative aspects of strong interactions to be carried out using hadronic Z and tau decays. The studies presented include precise determinations of the strong coupling constant, tests of its flavour independence, tests of the SU(3) gauge structure of QCD, study of coherence effects, and measurements of single-particle inclusive distributions and two-particle correlations for many identified baryons and mesons.

44 data tables

Charged particle sphericity distribution.

Charged particle aplanarity distribution.

Charged particle Thrust distribution.

More…

Tuning and test of fragmentation models based on identified particles and precision event shape data.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 73 (1996) 11-60, 1996.
Inspire Record 424112 DOI 10.17182/hepdata.47800

Event shape and charged particle inclusive distributions are measured using 750000 decays of the Z to hadrons from the DELPHI detector at LEP. These precise data allow a decisive confrontation with models of the hadronization process. Improved tunings of the JETSET, ARIADNE and HERWIG parton shower models and the JETSET matrix element model are obtained by fitting the models to these DELPHI data as well as to identified particle distributions from all LEP experiments. The description of the data distributions by the models is critically reviewed with special importance attributed to identified particles.

56 data tables

Transverse momentum PTIN w.r.t. the Thrust axis. For the first table Thrust axis definition is from seen charged particles corrected to final state particles. For the second table Thrust axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.

Transverse momentum PTOUT w.r.t. the Thrust axis. For the first table Thrust axis definition is from seen charged particles corrected to final state particles. For the second table Thrust axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.

Transverse momentum PTIN w.r.t. the Sphericity axis. For the first table Sphericity axis definition is from seen charged particles corrected to final state particles. For the second table Sphericity axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.

More…

Inclusive pi+-, K+- and (p, anti-p) differential cross-sections at the Z resonance

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Z.Phys.C 66 (1995) 355-366, 1995.
Inspire Record 382179 DOI 10.17182/hepdata.48315

Inclusive π±, K± and\((p,\bar p)\) differential cross-sections in hadronic decays of the Z have been measured as a function ofz=Phadron/Pbeam, the scaled momentum. The results are based on approximately 520 000 events measured by the ALEPH detector at LEP during 1992. Charged particles are identified by their rate of ionization energy loss in the ALEPH Time Projection Chamber. The position, ξ*, of the peak in the ln(1/z) distribution is determined, and the evolution of the peak position with centre-of-mass energy is compared with the prediction of QCD.

3 data tables

No description provided.

No description provided.

No description provided.


Measurement of the production rates of charged hadrons in e+ e- annihilation at the Z0

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 63 (1994) 181-196, 1994.
Inspire Record 372772 DOI 10.17182/hepdata.48259

The inclusive production rates of π±,K± andp\(\bar p\) inZ0 decays have been measured with the OPAL detector at LEP. Using the energy loss measurement in the jet chamber, the momentum range up to the beam energy (45.6 GeV/c) has been covered. Differential cross sections and total particle yields are given. Comparisons of the inclusive momentum spectra and the total rates with predictions of the JETSET and the HERWIG Monte Carlo model are presented. The total single rates are found to be 17.05±0.43 π±, 2.42±0.13K± and 0.92±0.11p\(\bar p\) per hadronic event. Predictions of JETSET for cross sections and total rates agree very well for π±; however, for momenta greater than 4 GeV/c,K± rates are underestimated and\(\bar p\) rates are overestimated. Combined with data of other particle species there is evidence that the peak positions in the ξ=ln(1/xp) distributions show a different mass dependence for mesons and baryons. However, both JETSET and HERWIG Monte Carlo predictions agree with the observed data.

4 data tables

Normalised momentum distribution for charged pion production.

Normalised momentum distribution for charged kaon production.

Normalised momentum distribution for proton / antiproton production.

More…

Pion, Kaon and Proton Cross-sections in $e^+ e^-$ Annihilation at 34-{GeV} and 44-{GeV} Center-of-mass Energy

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 42 (1989) 189, 1989.
Inspire Record 267755 DOI 10.17182/hepdata.1500

The inclusive production of π± andK± mesons and of protons and antiprotons ine+e− annihilations has been measured at 34 GeV and 44 G

18 data tables

No description provided.

No description provided.

No description provided.

More…