A MEASUREMENT OF THE PROTON STRUCTURE FUNCTIONS USING INELASTIC ELECTRON SCATTERING

Mestayer, M.D. ;
PhD Thesis, 1978.
Inspire Record 131529 DOI 10.17182/hepdata.14
54 data tables

No description provided.

No description provided.

No description provided.

More…

Positron-Proton Scattering

Browman, A. ; Liu, F. ; Schaerf, C. ;
Phys.Rev. 139 (1965) B1079-B1085, 1965.
Inspire Record 944961 DOI 10.17182/hepdata.26686

The importance of two-photon exchange in elastic electron-proton scattering was investigated by measuring the ratio of positron-proton to electron-proton scattering. Four-momentum transfers as large as 0.756 (BeV/c)2 (19.5 F−2) were used. The data indicate that two-photon effects are (4.0±1.5)% larger than those predicted by the radiative corrections at the highest momentum transfers attained in these experiments. The two-photon corrections predicted using a static charge distribution fit the data well at lower momentum transfers and forward angles, but appear to be small at higher momentum transfers and backward angles.

10 data tables

Data recalculated from the data of Yount and Pine.

Data recalculated from the data of Yount and Pine. RUN_1 and RUN_2 of the Yount and Pine experiment were separated by large time interval.

Data recalculated from the data of Yount and Pine.

More…

Measurements of elastic electron - proton scattering at large momentum transfer

Sill, A.F. ; Arnold, R.G. ; Bosted, Peter E. ; et al.
Phys.Rev.D 48 (1993) 29-55, 1993.
Inspire Record 341324 DOI 10.17182/hepdata.22584

Measurements of the forward-angle differential cross section for elastic electron-proton scattering were made in the range of momentum transfer from Q2=2.9 to 31.3 (GeV/c)2 using an electron beam at the Stanford Linear Accelerator Center. The data span six orders of magnitude in cross section. Combinded statistical and systematic uncertainties in the cross section measurements ranged from 3.6% at low Q2 to 19% at high Q2. These data have been used to extract the proton magnetic form factor GMp(Q2) and Dirac form factor F1p(Q2) by using form factor scaling. The logarithmic falloff of Q4F1p expected from leading twist predictions of perturbative quantum chromodynamics is consistent with the new data at high Q2. Some nonperturbative and hybrid calculations also agree with our results.

2 data tables

No description provided.

Formfactor scaling assumes (Ge=Gm/mu).


Electron Scattering at 4-Degrees with Energies of 4.5-GeV - 20-GeV

Stein, S. ; Atwood, W.B. ; Bloom, Elliott D. ; et al.
Phys.Rev.D 12 (1975) 1884, 1975.
Inspire Record 100597 DOI 10.17182/hepdata.4669

This paper presents the results of the analysis of a single-arm inelastic-electron-scattering experiment at an angle of 4°. We present data on the turnon of scaling in the low-q2 region 0.1<q2<1.8, the neutron-proton comparison at large values of the scaling variable ω, resonance excitation, and the shadowing in scattering from heavy nuclei.

21 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of Elastic electron Scattering from the Proton at High Momentum Transfer

Arnold, R.G. ; Bosted, Peter E. ; Chang, C.C. ; et al.
Phys.Rev.Lett. 57 (1986) 174, 1986.
Inspire Record 228320 DOI 10.17182/hepdata.3133

We have performed absolute measurements of the differential cross section for elastic e−p scattering in the range of momentum transfer from Q2=2.9 to 31.3 (GeV/c)2. Combined statistical and systematic uncertainties in the cross-section measurements ranged from 3% at low Q2 to 19% at high Q2. These data have been used to extract the proton magnetic form factor GMp(Q2). The results show a smooth decrease of Q4GMp with momentum transfer above Q2=10 (GeV/c)2. These results are compared with recent predictions of perturbative QCD.

14 data tables

No description provided.

No description provided.

No description provided.

More…

Elastic electron - Proton Scattering at Large Four Momentum Transfer

Kirk, Paul N. ; Breidenbach, Martin ; Friedman, Jerome I. ; et al.
Phys.Rev.D 8 (1973) 63-91, 1973.
Inspire Record 73424 DOI 10.17182/hepdata.21999

Electron-proton elastic-scattering cross sections have been measured at the Stanford Linear Accelerator Center for four-momentum transfers squared q 2 from 1.0 to 25.0 (GeVc)2. The electric (GEp) and magnetic (GMp) form factors of the proton were not separated, since angular distributions were not measured at each q 2. However, values for GMp were derived assuming various relations between GEp and GMp. Several theoretical models for the behavior of the proton magnetic form factor at high values of q 2 are compared with the data.

22 data tables

No description provided.

No description provided.

No description provided.

More…