Elastic electron-proton scattering between 0.05 and 0.30 (gev/c)-squared

Botterill, D.R. ; Braben, D.W. ; Montgomery, Hugh E. ; et al.
Phys.Lett.B 46 (1973) 125-128, 1973.
Inspire Record 86172 DOI 10.17182/hepdata.47844

Elastic electron proton scattering has been used to check the validity of the dipole fit of the proton form factors at momentum transfer between 0.05 and 0.30 (GeV/ c ) 2 . The general behaviour of the cross sections is in agreement with previous measurements and is close to the dipole predictions but there is the suggestion of some small amplitude deviations. It is speculated that these deviations may be related to similar effects in the proton formfactor derived from the ISR pp elastic scattering data via a Chou-Yang model.

4 data tables

D(SIG(N=DIPOLE))/D(OMEGA) is cross-section derived in the assumption that both the magnetic and electric form - factors of the proton can be expressed by the dipole formula G(q**2) = 1/(1 + q**2/0.71)**2. Data are read from graph by BVP.

D(SIG(N=DIPOLE))/D(OMEGA) is cross-section derived in the assumption that both the magnetic and electric form - factors of the proton can be expressed by the dipole formula G(q**2) = 1/(1 + q**2/0.71)**2. Data are read from graph by BVP.

Results of fit of the combined data samples of Table 1 and Table 2. Data points was fitted by formula A + B*q**2 + C*sin(OMEGA*q**2 + PHI).

More…

Elastic Electron-Proton Scattering at Momentum Transfers up to 110 Fermi$^−^2$

Behrend, H.J. ; Brasse, F.W. ; Engler, J. ; et al.
Nuovo Cim.A 48 (1967) 140-164, 1967.
Inspire Record 1185336 DOI 10.17182/hepdata.1060

Using the internal beam of DESY elastic electron-proton cross-sections were measured at various angles between 32° and 130°, and with momentum transfers ofq 2=39, 60, 80 and 110 fm−2. Two single-quadrupole spectrometers, movable around a common liquid-hydrogen target, were used for analysing the momentum of the scattered electrons. Čerenkov and shower counters discriminated against pion and low-energy background. As a cross-section reference, recoil protons from elastic scattering atq 2=10 fm−2 were used, with a quantameter serving as an intermediate monitor. The data are consistent with the Rosenbluth formula, giving real form factorsG E andG M . Both continue to decrease with increasing momentum transfer, but somewhat faster than indicated by measurements performed so far.

9 data tables

No description provided.

No description provided.

No description provided.

More…

Electromagnetic Form Factors of the Proton

Bumiller, F. ; Croissiaux, M. ; Dally, E. ; et al.
Phys.Rev. 124 (1961) 1623-1631, 1961.
Inspire Record 47220 DOI 10.17182/hepdata.26853

This paper reports experimental findings on the Dirac (F1) and Pauli (F2) form factors of the proton. The form factors have been obtained by using the Rosenbluth formula and the method of intersecting ellipses in analyzing the elastic electron-proton scattering cross sections. A range of energies covering the interval 200-1000 Mev for the incident electrons is explored. Scattering angles vary from 35° to 145°. Values as high as q2≅31 f−2 (q=energy−momentumtransfer) are investigated, but form factors can be reliably determined only up to about q2=25 f−2. Splitting of the form factors is confirmed. The newly measured data are in good agreement with earlier Stanford data on the form factors and also with the predictions of a recent theoretical model of the proton. Consistency in determining the values of the form factors at different energies and angles gives support to the techniques of quantum electrodynamics up to q2≅25 f−2. At the extreme conditions of this experiment (975 Mev, 145°) the behavior of the form factors may be exhibiting some anomaly.

24 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the vector analyzing power in elastic electron proton scattering as a probe of double photon exchange amplitudes.

The SAMPLE collaboration Wells, S.P. ; Averett, T. ; Barkhuff, D. ; et al.
Phys.Rev.C 63 (2001) 064001, 2001.
Inspire Record 524209 DOI 10.17182/hepdata.31444

We report the first measurement of the vector analyzing power in inclusive transversely polarized elastic electron-proton scattering at Q^2 = 0.1 (GeV/c)^2 and large scattering angles. This quantity should vanish in the single virtual photon exchange, plane wave impulse approximation for this reaction, and can therefore provide information on double photon exchange amplitudes for electromagnetic interactions with hadronic systems. We find a non-zero value of A=-15.4+/-5.4 ppm. No calculations of this observable for nuclei other than spin 0 have been carried out in these kinematics, and the calculation using the spin orbit interaction from a charged point nucleus of spin 0 cannot describe these data.

1 data table

Polarized beam.


Parity violation in elastic electron proton scattering and the proton's strange magnetic form-factor.

The SAMPLE collaboration Spayde, D.T. ; Averett, T. ; Barkhuff, D. ; et al.
Phys.Rev.Lett. 84 (2000) 1106-1109, 2000.
Inspire Record 507265 DOI 10.17182/hepdata.31230

We report a new measurement of the parity-violating asymmetry in elastic electron scattering from the proton at backward scattering angles. This asymmetry is sensitive to the strange magnetic form factor of the proton as well as electroweak axial radiative corrections. The new measurement of A=-4.92 +- 0.61 +- 0.73 ppm provides a significant constraint on these quantities. The implications for the strange magnetic form factor are discussed in the context of theoretical estimates for the axial corrections.

1 data table

Polarized beam. FORMFACTOR(NAME=GM_S) is the strange quark contribution. FORMFACTOR(NAME=GM_S) is in nucleon magnetic FF.


Measurement of the proton's neutral weak magnetic form factor.

The SAMPLE collaboration Mueller, B. ; Beck, D.H. ; Beise, E.J. ; et al.
Phys.Rev.Lett. 78 (1997) 3824-3827, 1997.
Inspire Record 440739 DOI 10.17182/hepdata.31349

We report the first measurement of the parity-violating asymmetry in elastic electron scattering from the proton. The asymmetry depends on the neutral weak magnetic form factor of the proton which contains new information on the contribution of strange quark-antiquark pairs to the magnetic moment of the proton. We obtain the value $G_M~Z= 0.34 \pm 0.09 \pm 0.04 \pm 0.05$ n.m. at $Q~2=0.1$ (GeV/c)${}~2$.

1 data table

Polarized beam. FORMFACTOR(NAME=GZM) = (1/4)*(GM_P-GM_N) - SIN2TW*GM_P - (1/4)*GM_S, whereFORMFACTOR(NAME=GM_S) is the strange quark contribution. FORMFACTOR(NAME=GZM) and FORMFACTOR(NAME=GM_S) are in nucleon magnetic FF.


First measurement of the polarization transfer on the proton in the reactions H (e (polarized), e-prime p (polarized)) and D (e (polarized), e-prime p (polarized))

Eyl, D. ; Frey, A. ; Andresen, H.G. ; et al.
Z.Phys.A 352 (1995) 211-214, 1995.
Inspire Record 406592 DOI 10.17182/hepdata.16499

The measurement of the polarisation transfer to the proton in the reactions\(H(\vec e,e'\vec p)\) and\(D(\vec e,e'\vec p)\) performed with longitudinally polarised electrons in quasi-free kinematics is presented. The coincidence measurement was executed atQ2≈8fm−2 using the 855 MeV, c.w. beam of the Mainz Microtron MAMI. The recoil polarisation was determined by means of a carbon analyser. The experiment shows that the binding of the nucleon does not modify the polarisationPx of the recoil proton within an error ofΔPx/Px≈10%. The measured polarisation agrees with recent theoretical predictions. Implications for the measurement of the electric form factor of the neutron using the\(D(\vec e,e'\vec n)\) reaction are discussed.

1 data table

No description provided.


Measurement of the neutral weak form factors of the proton.

The HAPPEX collaboration Aniol, K.A. ; Armstrong, D.S. ; Baylac, M. ; et al.
Phys.Rev.Lett. 82 (1999) 1096-1100, 1999.
Inspire Record 478059 DOI 10.17182/hepdata.31319

We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton. The kinematic point (theta_lab = 12.3 degrees and Q^2=0.48 (GeV/c)^2) is chosen to provide sensitivity, at a level that is of theoretical interest, to the strange electric form factor G_E^s. The result, A=-14.5 +- 2.2 ppm, is consistent with the electroweak Standard Model and no additional contributions from strange quarks. In particular, the measurement implies G_E^s + 0.39G_M^s = 0.023 +- 0.034 (stat) +- 0.022 (syst) +- 0.026 (delta G_E^n), where the last uncertainty arises from the estimated uncertainty in the neutron electric form factor.

1 data table

Longitudinally polarized beam. C=L and C=R means left- and right polarization. The second systematic uncertainty arises from the estimated uncertainty inthe neutron electromagnetic from factor.


Measurement of Elastic electron Scattering from the Proton at High Momentum Transfer

Arnold, R.G. ; Bosted, Peter E. ; Chang, C.C. ; et al.
Phys.Rev.Lett. 57 (1986) 174, 1986.
Inspire Record 228320 DOI 10.17182/hepdata.3133

We have performed absolute measurements of the differential cross section for elastic e−p scattering in the range of momentum transfer from Q2=2.9 to 31.3 (GeV/c)2. Combined statistical and systematic uncertainties in the cross-section measurements ranged from 3% at low Q2 to 19% at high Q2. These data have been used to extract the proton magnetic form factor GMp(Q2). The results show a smooth decrease of Q4GMp with momentum transfer above Q2=10 (GeV/c)2. These results are compared with recent predictions of perturbative QCD.

14 data tables

No description provided.

No description provided.

No description provided.

More…

Electron Scattering at 4-Degrees with Energies of 4.5-GeV - 20-GeV

Stein, S. ; Atwood, W.B. ; Bloom, Elliott D. ; et al.
Phys.Rev.D 12 (1975) 1884, 1975.
Inspire Record 100597 DOI 10.17182/hepdata.4669

This paper presents the results of the analysis of a single-arm inelastic-electron-scattering experiment at an angle of 4°. We present data on the turnon of scaling in the low-q2 region 0.1<q2<1.8, the neutron-proton comparison at large values of the scaling variable ω, resonance excitation, and the shadowing in scattering from heavy nuclei.

21 data tables

No description provided.

No description provided.

No description provided.

More…