Measurement of elastic phi photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 377 (1996) 259-272, 1996.
Inspire Record 415642 DOI 10.17182/hepdata.44895

The production of $\phi$ mesons in the reaction $e~{+}p \rightarrow e~{+} \phi p$ ($\phi \rightarrow K~{+}K~{-}$) at a median $Q~{2}$ of $10~{-4} \ \rm{GeV~2}$ has been studied with the ZEUS detector at HERA. The differential $\phi$ photoproduction cross section $d\sigma/dt$ has an exponential shape and has been determined in the kinematic range $0.1<|t|<0.5 \ \rm{GeV~2}$ and $60 < W < 80 \ \rm{GeV}$. An integrated cross section of $\sigma_{\gamma p \rightarrow \phi p} = 0.96 \pm 0.19~{+0.21}_{-0.18}$ $\rm{\mu b}$ has been obtained by extrapolating to {\it t} = 0. When compared to lower energy data, the results show a weak energy dependence of both $\sigma_{\gamma p \rightarrow \phi p}$ and the slope of the $t$ distribution. The $\phi$ decay angular distributions are consistent with $s$-channel helicity conservation. From lower energies to HERA energies, the features of $\phi$ photoproduction are compatible with those of a soft diffractive process.

3 data tables

Numerical values of dsig/dt distribution requested from authors.

Numerical values of dsig/dt distribution read from plot.


A Study of Elastic Photoproduction of Low Mass K$^{+} $K$^{-}$ Pairs From Hydrogen in the Energy Range 2.8-{GeV} to 4.8-{GeV}

Barber, D.P. ; Dainton, J.B. ; Lee, L.C.Y. ; et al.
Z.Phys.C 12 (1982) 1, 1982.
Inspire Record 168200 DOI 10.17182/hepdata.16435

The results of an experiment to study elasticK+K− photoproduction are presented. Differential cross sections and spin density matrix elements for ϕ(1.019) production are stddied as a function of incident photon energy and over a wide range of momentum transfer,t (tmin>t>−1.5(GeV/c)2). Helicity conserving amplitudes are observed to dominate ϕ production throughout this range and the differential cross sections exhibit a forward diffractive peak which cannot be understood in terms of a simple exponential dependence. A new value of the photon ϕ coupling constant is determined and shown to be consistent withe+e− annihilation measurements. A detailed study of the energy dependence of the differential cross sections is made, including other experimental data, and the extracted effective Regge trajectory compared with other diffractive processes. A study of the dependence of theK+K− decay angular distribution on invariant mass reveals evidence for ans wave contribution interfering with thep wave ϕ which may be attributable to theS* meson.

3 data tables

LOWER LIMIT OF ABS(T) IN TABLE IS TMIN.

No description provided.

LOW T VARIATION WITH ELAB. LOWER LIMIT OF ABS(T) IN TABLE IS TMIN.


Measurements of Elastic Rho and Phi Meson Photoproduction Cross-Sections on Protons from 30 GeV to 180 GeV

Egloff, R.M. ; Davis, P.J. ; Luste, G. ; et al.
Phys.Rev.Lett. 43 (1979) 657, 1979.
Inspire Record 141059 DOI 10.17182/hepdata.20740

The elastic photoproduction cross sections for ρ and ϕ mesons from protons have been measured from 30 to 180 GeV. The energy dependences agree well with predictions made by using vector-meson dominance and an additive quark model. The ρ cross section is approximately constant with energy while the ϕ cross section rises from 0.5 to 0.7 μb with increasing energy.

1 data table

No description provided.


S - $P$ Wave Interference in $K^+ K^-$ Photoproduction Near $K^+ K^-$ Threshold

Fries, D.C. ; Heine, P. ; Hirschmann, H. ; et al.
Nucl.Phys.B 143 (1978) 408-416, 1978.
Inspire Record 130050 DOI 10.17182/hepdata.34981

A mass-dependent asymmetry was observed in the decay angular distribution of a photoproduced K + K − system near the K + K − threshold. The corresponding moments 〈 Y 1 0 〉 have been evaluated. Interpreting the asymmetry as an S-P wave interface due to the states S 993 ∗ (0 + ) and ø 1019 (1 − ) one can compute the moments 〈 Y 1 0 〉 through an amplitude analysis. The theoretical calculation reproduces the experimental results well, if one assumes a real S-wave amplitude for the S 993 ∗ . The data cannot be explained by a non-resonant real S-wave. Other possibilities have been discussed. An estimate of the photoproduction cross section of the S ∗ → K + K − can be given on the basis of the above hypothesis.

1 data table

No description provided.