Spin observables in neutron proton elastic scattering.

Ahmidouch, A. ; Arnold, J. ; van den Brandt, B. ; et al.
Eur.Phys.J.C 2 (1998) 627-641, 1998.
Inspire Record 471273 DOI 10.17182/hepdata.11376

The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$

20 data tables

Position 'A' (see text for explanation).

Position 'A' (see text for explanation).

Position 'A' (see text for explanation).

More…

A measurement of the spin correlation parameter C NN (θ) in n-p scattering at 181 MeV

Sowinski, J. ; Byrd, R.C. ; Jacobs, W.W. ; et al.
Phys.Lett.B 199 (1987) 341-345, 1987.
Inspire Record 1392688 DOI 10.17182/hepdata.30055

The spin correlation parameter C NN has been measured for n-p elastic scattering at 181 MeV. A comparison with predictions from various phase shift sets and potential models reveals sizeable deviations from the for the data Paris potential and Saclay phase shifts. For the Paris potential the deviations are directly related to an overprediction of the 3 D 2 phase shift parameter.

1 data table

Numerical values of data supplied by J. Sowinski.


NEUTRON - PROTON ELASTIC SCATTERING FROM 2-GeV/c TO 7-GeV/c

Perl, Martin L. ; Cox, Jack ; Longo, Michael J. ; et al.
Phys.Rev.D 1 (1970) 1857, 1970.
Inspire Record 54902 DOI 10.17182/hepdata.69198

Direct measurements were made of neutron-proton elastic scattering differential cross sections at high energies. A neutron beam with a continuous momentum spectrum between 1.2 and 6.7 GeV/c was scattered off a liquid hydrogen target, and spark chambers were used to determine the neutron scattering angle and, in a proton spectrometer, to measure the momentum and scattering angle of the recoil proton. Differential cross sections are presented over the incident neutron momentum range in intervals of the order of 0.5-GeV/c wide. The cross sections have an exponential peak in the forward direction and then flatten and become isotropic about the 90° c.m. scattering angle. At larger angles, the cross sections again rise towards the expected charge-exchange peak, which was not within the range of this experiment. There is little evidence of any other structure in the cross section. Values are presented for the slope of the diffraction peak, and comparisons are made between these slopes, and the 90° c.m. cross sections, for pp and np elastic scattering. The results presented here differ from those previously reported because of an error in a Monte Carlo calculation and in the availability of improved data on the real part of the np elastic scattering amplitude. At 5 GeV/c, a direct comparison of pp and np data allows the I=0 differential cross section to be extracted. The np data have been fitted in powers of cosθc.m. for |cosθc.m.|<0.8 for each energy range.

9 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the Proton Proton Total Cross-Section and Small Angle Elastic Scattering at ISR Energies

Baksay, L. ; Baum, L. ; Böhm, A. ; et al.
Nucl.Phys.B 141 (1978) 1-28, 1978.
Inspire Record 136189 DOI 10.17182/hepdata.34829

Measurements of the total cross section have been performed at the ISR with c.m. energies between 23.5 GeV and 62.5 GeV. Two independent experimental methods have been applied, a measurement of total interaction rate and of small angle elastic scattering. Both experiments give consistent results showing that the total cross section increases by (11.8±1.5) % over the ISR energy range. This experiment has also measured the slope of the forward diffraction peak in elastic scattering at small momentum transfer. The elastic cross section shows the same relative rise as the total cross section, and the ratio λ of elastic to total cross section approaches a constant value of λ =0.178±0.003.

8 data tables

TOTAL CROSS SECTION FROM (INTERACTION RATE)/(LUMINOSITY). SYSTEMATIC ERROR <0.8 PCT.

TOTAL CROSS SECTION FROM APPLYING THE OPTICAL THEOREM TO SMALL ANGLE ELASTIC SCATTERING EXTRAPOLATED TO T=0.

More…

Measurement of the Absolute Differential Cross Section for np Elastic Scattering at 194 MeV

Sarsour, M. ; Peterson, T. ; Planinic, M. ; et al.
Phys.Rev.C 74 (2006) 044003, 2006.
Inspire Record 710735 DOI 10.17182/hepdata.31683

A tagged medium-energy neutron beam has been used in a precise measurement of the absolute differential cross section for np back-scattering. The results resolve significant discrepancies within the np database concerning the angular dependence in this regime. The experiment has determined the absolute normalization with 1.5% uncertainty, suitable to verify constraints of supposedly comparable precision that arise from the rest of the database in partial wave analyses. The analysis procedures, especially those associated with evaluation of systematic errors in the experiment, are described in detail so that systematic uncertainties may be included in a reasonable way in subsequent partial wave analysis fits incorporating the present results.

1 data table

Final differential cross sections averaged over data samples.


Measurement of the n-p elastic scattering angular distribution at En=10 MeV

Boukharouba, N. ; Bateman, F. B. ; Brient, C. E. ; et al.
Phys.Rev.C 65 (2001) 014004, 2001.
Inspire Record 568789 DOI 10.17182/hepdata.25394

The reported data are given for the mean angles measured rather than for the central angles. The data are normalized to the most recent Evaluated Nuclear Data File evaluated angle-integrated elastic-scattering cross section and refitted with a Legendre polynomial expansion.

1 data table

Measured values of the N-P elastic scattering angular distributions. Data are normalized to the Breit-Hopkins total elastic cross section after radiative capture correction.


Measurement of spin observables in neutron proton elastic scattering. I: Correlation parameters

Arnold, J. ; van den Brandt, B. ; Daum, M. ; et al.
Eur.Phys.J.C 17 (2000) 67-81, 2000.
Inspire Record 537914 DOI 10.17182/hepdata.43392

The spin correlation parameters$A_{oonn}, A_{ooss}, A_{oosk}, A_{ookk}$and the analyzing power$A_{oono}$have been measured i

6 data tables

Values of the coefficients for the linear combinations of the spin correlation parameters Cpq measurements for the four different beam and target polarisation orientations. For the (z,z) and (y,y) configurations the coefficients are identical for all incident kinetic energies.

Measurement of the analysing power. Statistical errors only are shown. For the systematic errors see the systematics section above. Note that there are two overlapping angular settings.

Measurements of the spin correlation parameter CNN. Statistical errors onlyare shown. For the systematics see the systematic section above. Note the two overlapping angular settings.

More…

Measurement of spin observables in neutron proton elastic scattering. II: Rescattering parameters

Arnold, J. ; van den Brandt, B. ; Daum, M. ; et al.
Eur.Phys.J.C 17 (2000) 83-95, 2000.
Inspire Record 537915 DOI 10.17182/hepdata.43295

A double scattering experiment, performed at the Paul-Scherrer-Institut (PSI), has measured a large variety of spin observables for free np elastic scattering from 260 to 535 MeV in the c.m. angle ran

12 data tables

Relative uncertainties on the carbon polarimeter analysing power (AC).

Relative uncertainty in the beam polarisation (PB).

Measurements of DNN with statistical errors only.

More…

Test of Charge Symmetry in Neutron - Proton Elastic Scattering at 477-{MeV}

Abegg, R. ; Bandyopadhyay, D. ; Birchall, J. ; et al.
Phys.Rev.Lett. 56 (1986) 2571, 1986.
Inspire Record 228239 DOI 10.17182/hepdata.20237

An experiment resulting in the first measurement of the isospin-mixing, charge-symmetry-violating component of the n−p interaction has been performed. The experiment determined the difference in the angles of the zero crossing of the neutron and proton analyzing powers An and Ap at 477 MeV. In terms of the laboratory scattering angle of the neutron, the measured difference is θ0n(An)−θ0n(Ap)=+0.13° ±0.06° (±0.03°), where the second error is a worst-case estimate of systematic error. The resulting difference in the analyzing powers at the zero-crossing angle is An−Ap=+0.0037 ±0.0017 (±0.0008).

1 data table

No description provided.


n p elastic spin transfer measurements at 485-MeV and 635-MeV

McNaughton, K.H. ; Ambrose, D.A. ; Coffey, P. ; et al.
Phys.Rev.C 46 (1992) 47-51, 1992.
Inspire Record 342389 DOI 10.17182/hepdata.26097

We have measured the spin-transfer parameters KLL, KSL, KLS, and KSS at 635 MeV from 50° to 178° c.m. and at 485 MeV from 74° to 176° c.m. These new data have a significant impact on the phase-shift analyses. There are now sufficient data near these energies to overdetermine the elastic nucleon-nucleon amplitudes.

2 data tables

Spin transfer parameters from np elastic scattering at 635 MeV. There is an additional overall normalisation of 2 PCT.

Spin transfer parameters from np elastic scattering at 485 MeV. There is an additional overall normalisation of 2 PCT.


The Spin Correlation Parameter and Analyzing Power in $n p$ Elastic Scattering at Intermediate-energies

Abegg, R. ; Ahmad, M. ; Bandyopadhyay, D. ; et al.
Phys.Rev.C 40 (1989) 2684-2696, 1989.
Inspire Record 281880 DOI 10.17182/hepdata.26220

In order to improve existing I=0 phase shift solutions, the spin correlation parameter ANN and the analyzing powers A0N and AN0 have been measured in n-p elastic scattering over an angular range of 50°–150° (c.m.) at three neutron energies (220, 325, and 425 MeV) to an absolute accuracy of ±0.03. The data have a profound effect on various phase parameters, particularly the P11, D23, and ε1 phase parameters which in some cases change by almost a degree. With the exception of the highest energy, the data support the predictions of the latest version of the Bonn potential. Also, the analyzing power data (A0N and AN0) measured at 477 MeV in a different experiment over a limited angular range [60°–80° (c.m.)] are reported here.

10 data tables

The beam analysing power at incident kinetic energy 220 MeV. Additional systematic uncertainty of +- 0.015 and a scalar error of 3.5 PCT.

The beam analysing power at incident kinetic energy 325 MeV. Additional systematic uncertainty of +- 0.018 and a scalar error of 3.1 PCT.

The beam analysing power at incident kinetic energy 425 MeV. Additional systematic uncertainty of +- 0.022 and a scalar error of 3.3 PCT.

More…

Neutron - proton elastic scattering spin - spin correlation parameter. Measurements between 500 and 800 - MeV. 3. Mixtures of C(ss), C(ls), C(ll), and C(nn).

Carlson, V. ; Garnett, R. ; Hill, D. ; et al.
Phys.Rev.D 53 (1996) 3506-3533, 1996.
Inspire Record 404963 DOI 10.17182/hepdata.50927

Measurements are presented for several mixtures of the spin observables CSS,CSL=CLS, CLL, and CNN for neutron-proton elastic scattering. These data were obtained with a free polarized neutron beam, a polarized proton target, and a large magnetic spectrometer for the outgoing proton. The neutron beam kinetic energies were 484, 567, 634, 720, and 788 MeV. Combining these results with earlier measurements allows the determination of the pure spin observables CSS, CLS, and CLL at 484, 634, and 788 MeV for c.m. angles 25°≤θc.m.≤180° and at 720 MeV for 35°≤θc.m.≤80°. These data make a significant contribution to the knowledge of the isospin-0 nucleon-nucleon scattering amplitudes. © 1996 The American Physical Society.

19 data tables

Results for the pure spin observables. Statistical errors only. (Data for CSS and CNN at (172.5 to 177.5) and (167.5 to 172.5) degrees are uncertain because of the rapid angular dependence and possible errors in angle, and may be omitted from phase shift analyses.) The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.

Results for the pure spin observables. Statistical errors only. (Data for CSS and CNN at (172.5 to 177.5) and (167.5 to 172.5) degrees are uncertain because of the rapid angular dependence and possible errors in angle, and may be omitted from phase shift analyses.) The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.

Results for the pure spin observables. Statistical errors only. The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.

More…

Angular dependence of the beam and target analyzing powers a(oono) and A(ooon) in n p elastic scattering between 0.477-GeV and 0.940-GeV

Ball, J. ; Chesny, P. ; Combet, M. ; et al.
Nucl.Phys.A 559 (1993) 477-488, 1993.
Inspire Record 33734 DOI 10.17182/hepdata.36610

We present a total of 273 independent data points of the analyzing powers A oono (nP) and A ooon (nP) in a large angular interval at four energies between 0.477 and 0.940 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the polarized Saclay frozen-spin proton target. Part of the data was obtained with a CH 2 target. A comparison of the two measured observables allows one to determine the polarization of the neutron beam. The present results provide an important contribution to any future theoretical or phenomenological analysis.

8 data tables

No description provided.

No description provided.

Data from 97.7 to 123.4 degrees are combined beam and target analyzing powers.

More…

Angular dependence of analyzing power in n p elastic scattering between 0.312-GeV and 1.1-GeV

Ball, J. ; Chesny, P. ; Combet, M. ; et al.
Nucl.Phys.A 559 (1993) 489-510, 1993.
Inspire Record 341321 DOI 10.17182/hepdata.36590

We present a total of 427 np analyzing power data points in a large angular interval at 12 energies between 0.312 and 1.10 GeV. The SATURNE II polarized beam of free monochromatic neutrons was scattered either on the Saclay frozen-spin polarized proton target or on CH 2 and C targets. Present results are compared with existing elastic and quasieleastic data.

18 data tables

Results of the analyzing power for n p scattering at 0.312 GeV. The CH2 target was used.

Results of the analyzing power for n p scattering at 0.363 GeV. The CH2 target was used.

Results of the analyzing power for n p scattering at 0.800 GeV.

More…

MEASUREMENT OF N P AND P P ASYMMETRY WITH AN ACCELERATED POLARIZED DEUTERON BEAM FROM 725-MEV TO 1000-MEV PER NUCLEON

Bystricky, J. ; Deregel, J. ; Lehar, F. ; et al.
Nucl.Phys.A 444 (1985) 597-610, 1985.
Inspire Record 222367 DOI 10.17182/hepdata.37022

The accelerated polarized deuteron beam of Saturn II was used to measure the analyzing power for np elastic scattering at five energies. The left-right asymmetries ε = (L + R)/(L + R) for np and for pp elastic scattering were measured simultaneously by CH 2 − carbon subtraction using one of the beam-line polarimeters. The analyzing power A 00 n 0 (np) is given by the ratio ε np d / ε pp d multiplied by the known analyzing power for pp elastic scattering. Experimental evidence is consistent with the underlying assumption that in the kinetmatic region of the experiment the ratio of the np to pp analyzing powers for scattering of quasifree nucleons in deuterons is the same as for scattering of free neutrons and protons, respectively.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Angular dependence of the spin correlation parameter A(oonn) in n p elastic scattering between 0.8-GeV and 1.1-GeV

Ball, J. ; Chesny, P. ; Combet, M. ; et al.
Nucl.Phys.A 559 (1993) 511-525, 1993.
Inspire Record 33733 DOI 10.17182/hepdata.36583

We present a total of 323 data points of the spin correlation parameter A oonn (np) in a large angular interval at eight energies between 0.8 and 1.1 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the polarized Saclay frozen-spin proton target. The present data are the first existing results above 0.8 GeV.

9 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the spin correlation parameters A(00kk) and A(00sk) in n p elastic scattering at SATURNE-II

Ball, J. ; Chesny, P. ; Combet, M. ; et al.
Nucl.Phys.A 574 (1994) 697-715, 1994.
Inspire Record 383127 DOI 10.17182/hepdata.36564

We present a total of 191 and 203 data points of the elastic neutron-protonspin correlation parameters A ookk and A oosk , respectively. Both observables were measured in a large angular interval. The observable A ookk was measured from 0.312 to 1.10 GeV and A oosk from 0.80 to 1.10 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the polarized Saclay frozen-spin proton target. The beam polarization was oriented either along the beam direction or sideways, the target polarization was oriented longitudinally. Data are compared with phase-shift analyses predictions and with the PSI, LAMPF and SATURNE II results. Present results provide an important contribution to any future theoretical or phenomenological analysis.

14 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of $N P$ Analyzing Power A(00n0) Using the Deuteron Polarized Beam of Saturne-{II}

Ball, J. ; Lehar, F. ; De Lesquen, A. ; et al.
Nucl.Phys.B 286 (1987) 635-642, 1987.
Inspire Record 248563 DOI 10.17182/hepdata.33621

Both the np and the pp analyzing powers were measured simultaneously using the SATURNE II polarized deuteron beam at 0.550, 0.725, 0.900 and 1.15 GeV/nucleon. The results for the pp analyzing power coincide with the free pp elastic scattering data. We thus can assume that also the np analyzing power is equal to the one for scattering of free polarized neutrons. The np data cover the angular region 90° ≤ θ CM ≤ 125°. Our results for the np analyzing power clarify a discrepancy between earlier data at 0.5 GeV and allow conclusions about the energy dependence of the minimum of polarization at θ CM ⋍ 100° in the region from 0.5 to 0.9 GeV.

8 data tables

No description provided.

No description provided.

No description provided.

More…

Measurements of the two and three spin index observables in n p elastic scattering between 0.8-GeV and 1.1-GeV

Ball, J. ; Chesny, P. ; Combet, M. ; et al.
Z.Phys.C 61 (1994) 579-585, 1994.
Inspire Record 377674 DOI 10.17182/hepdata.14208

We present data of several rescattering observables measured inn p elastic scattering between 0.80 and 1.10 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the Saclay polarized frozen-spin proton target. Three different configurations of beam and target polarization directions were used: the observablesDonon andKonno were measured with the normal-normal spin configuration at eight energies;Nonkk,Dos″ok andKos″ko were determined with the longitudinal-longitudinal configuration at six energies;Nonsk,Dos″ok andKos″so with the sideway-longitudinal configuration at six energies. Part of the data was obtained with an unpolarized CH2 target where only the two spin-index polarization transfer parametersKos″ko andKos″so were determined. Data are compared with phase shift analyses predictions and with the LAMPF results at 0.788 GeV. Present results are the first measurements of rescattering observables above 0.80 GeV. They provide an important contribution to any future theoretical or phenomenological analysis.

20 data tables

No description provided.

No description provided.

No description provided.

More…

Measurements of the total cross-section difference Delta sigma-T in n p transmission between 0.86-GeV and 0.94-GeV

Ball, J. ; Chesny, P. ; Combet, M. ; et al.
Z.Phys.C 61 (1994) 53-58, 1994.
Inspire Record 353895 DOI 10.17182/hepdata.14263

We present results of the total cross section differenceΔσТ obtained in transmission measurements at the energies 0.86, 0.88, 0.91 and 0.94 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was transmitted through the polarized Saclay frozen-spin proton target. The beam and target polarizations were oriented in the vertical direction. The present results agree with previous SATURNE measurements and improve the amplitude analysis in the forward direction.

2 data tables

No description provided.

Average of this result and data from Fontaine et al. 1991, Nucl.Phys. B358, 297 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+2233> RED = 2233 </a>).


Neutron - proton elastic scattering spin spin correlation parameter measurements between 500-MeV and 800-MeV. 2. C(SS) and C(LS) at forward cm angles

Shima, T. ; Hill, D. ; Johnson, K.F. ; et al.
Phys.Rev.D 47 (1993) 29-45, 1993.
Inspire Record 335383 DOI 10.17182/hepdata.22585

Results are presented for the spin-spin correlation parameters CSS and CLS for free np elastic scattering at neutron beam kinetic energies of 484, 634, 720, and 788 MeV and c.m. angles between 25° and 80°. The measurements were performed with a polarized neutron beam and a polarized proton target. These are the first measurements of this type to be reported in the forward angular region with a free polarized neutron beam. The observables CSS and CLS are both small at all energies, except for CLS at 788 MeV, which is larger than phase-shift analysis predictions by more than one standard deviation for most of the measured points.

8 data tables

No description provided.

No description provided.

No description provided.

More…

Neutron proton elastic scattering spin spin correlation parameter measurements between 500-MeV and 800-Mev: 1. C(SL) and C(LL) at backward c.m. angles

Ditzler, W.R. ; Hill, D. ; Hoftiezer, J. ; et al.
Phys.Rev.D 46 (1992) 2792-2830, 1992.
Inspire Record 334079 DOI 10.17182/hepdata.22741

Final results are presented for the spin-spin correlation parameters CSL and CLL for np elastic scattering with a polarized neutron beam incident on a polarized proton target. The beam kinetic energies are 484, 634, and 788 MeV, and the c.m. angular range is 80°-180°. These data will contribute significantly to the determination of the isospin-0 amplitudes in the energy range from 500 to 800 MeV.

6 data tables

Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.

Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.

Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.

More…

Energy dependence of the neutron proton total cross-section differences Delta (sigma-T) and Delta (sigma-L) between 0.31-GeV and 1.1-GeV

Fontaine, J.M. ; Kunne, F. ; Bystricky, J. ; et al.
Nucl.Phys.B 358 (1991) 297-310, 1991.
Inspire Record 320446 DOI 10.17182/hepdata.33013

Final results for total cross section differences Δσ T and Δσ L measured with a polarized neutron beam transmitted through a polarized proton target are presented. Measurements were carried out at SATURNE II, at 11 energies between 0.63 and 1.1 GeV for Δσ T and at 9 energies between 0.312 and 1.1 GeV for Δσ L . The results are compared with measurements at PSI and LAMPF as well as with Δσ L data points deduced from p-d and p-p transmission experiments at the ANL-ZGS. The present results together with the corresponding pp data allow to determine two of the three imaginary parts of forward scattering amplitudes for isospin I = 0.

4 data tables

Measurements of the tranverse cross section differences.

Measurements of the tranverse cross section differences.

Measurement of the longitudinal cross section difference.

More…

Measurement of a Mixed Spin Spin Correlation Parameter for $n p$ Elastic Scattering

Garnett, R. ; Rawool, M. ; Carlson, V. ; et al.
Phys.Rev.D 40 (1989) 1708, 1989.
Inspire Record 25430 DOI 10.17182/hepdata.23054

The mixed spin-spin correlation parameter Cσσ≈0.5CSS−0.8CSL for np elastic scattering was measured for incident-neutron-beam kinetic energies of 484, 634, and 788 MeV over the center-of-mass angular range 75°-180°. These Cσσ data are important for determining the I=0 nucleon-nucleon amplitudes and provide strong constraints on the phase-shift solutions. It was found that the P11, S13, and D13 isospin-0 partial waves are most strongly affected.

3 data tables

Mixed spin parameter POL.POL(NAME=CXX) is given by 0.475 * CSS + 0.088 CNN + 0.1390 CLL - 0.744 CSL.

Mixed spin parameter POL.POL(NAME=CXX) is given by 0.506 * CSS + 0.064 CNN + 0.163 CLL - 0.809 CSL.

Mixed spin parameter POL.POL(NAME=CXX) is given by 0.528 * CSS + 0.050 CNN + 0.178 CLL - 0.824 CSL.


Charge Symmetry Breaking in $n p$ Elastic Scattering at 477-{MeV}

Abegg, R. ; Bandyopadhyay, D. ; Birchall, J. ; et al.
Phys.Rev.D 39 (1989) 2464, 1989.
Inspire Record 267187 DOI 10.17182/hepdata.23224

The effect of isospin-violating, charge-symmetry-breaking (CSB) terms in the np interaction has been observed at TRIUMF by measuring the difference in the zero-crossing angles of the neutron and proton analyzing powers, An and Ap, at a neutron energy of 477 MeV. The scattering asymmetries were measured with a neutron beam incident on a polarizable proton target. To reduce systematic errors, interleaved measurements of An and Ap were made using the same beam and target (apart from their respective polarization states). Neutrons and protons were detected in coincidence in the center-of-mass angle range from 59°–80°. The difference in zero-crossing angles was 0.340°±0.162° (±0.058°), which yields ΔA≡An-Ap=0.0047±0.0022 (±0.0008) using dA/dθc.m.=−0.01382 deg−1. The second errors represent systematic effects. This result is in good agreement with recent theoretical calculations which include CSB effects due to the np mass difference in π, ρ, and 2π exchange, electromagnetic coupling of the neutron anomalous magnetic moment to the proton current, ρ-ω-meson mixing, and short- and medium-range effects of the up- and down-quark mass difference.

1 data table

No description provided.