Inclusive Interactions of High-Energy Neutrinos and anti-neutrinos in Iron

de Groot, J.G.H. ; Hansl, T. ; Holder, M. ; et al.
Z.Phys.C 1 (1979) 143, 1979.
Inspire Record 133261 DOI 10.17182/hepdata.16826

We present results on charged current inclusive neutrino and antineutrino scattering in the neutrino energy range 30–200 GeV. The results include a) total cross-sections; b)y distributions; c) structure functions; and d) scaling violations observed in the structure functions. The results, as well as their comparison with the results of electron and muon inclusive scattering, are in agreement with the expectations of the quark parton model and QCD.

8 data tables

THE VALUES OF Q2 CORRESPONDING TO THE 6 DATA POINTS ARE 1.126,2.11,3.52,4.92,6.33,7.74.

THE VALUES OF Q2 CORRESPONDING TO THE 7 DATA POINTS ARE 1.27,2.25,4.22,7.04,9.85,12.66,15.48.

THE VALUES OF Q2 CORRESPONDING TO THE 8 DATA POINTS ARE 2.11,3.75,7.04,11.72,16.4,21.1,25.8,30.5.

More…

Total Cross-sections and Nucleon Structure Functions in the Gargamelle {SPS} Neutrino / Anti-neutrino Experiment

The Gargamelle SPS collaboration Morfin, J.G. ; Weerts, H. ; Frodesen, A.G. ; et al.
Phys.Lett.B 104 (1981) 235-238, 1981.
Inspire Record 165895 DOI 10.17182/hepdata.31166

Total neutrino and antineutrino cross sections in the energy range 15 to 150 GeV, and the nucleon structure functions, F 2 ( x , Q 2 ) and xF 3 ( x , Q 2 ) in the Q 2 range 0.5 to 50 (GeV/ c ) 2 have been measured using a data sample of 3000 neutrino and 3800 antineutrino events. The structure functions show a weak Q 2 dependence at different x values.

4 data tables

Measured charged current total cross section.

Measured charged current total cross section.

ERRORS CONTAIN 10 P.C. SYSTEMATIC ERROR WHICH HAS BEEN LINEARLY ADDED TO THE STATISTICAL ERROR.

More…

Total Neutrino and Anti-neutrino Charged Current Cross-section Measurements in 100-{GeV}, 160-{GeV} and 200-{GeV} Narrow Band Beams

Berge, J.P. ; Blondel, A. ; Bockmann, P. ; et al.
Z.Phys.C 35 (1987) 443, 1987.
Inspire Record 246156 DOI 10.17182/hepdata.15709

Neutrino and antineutrino total charged current cross sections on iron were measured in the 100, 160, and 200 GeV narrow band beams at the CERN SPS in the energy range 10 to 200 GeV. Assuming σ/E to be constant, the values corrected for non-isoscalarity are σv/E = (0.686 ± 0.019) * 10−38 cm2/ (GeV · nucleon) and σv/E = (0.339 ± 0.010) * 10−38 cm2/ (GeV·nucleon). Between 50 and 150 GeV no energy dependence of σ/E was observed within ±3% for neutrino and ±4% for antineutrino interactions.

5 data tables

Measured charged current total cross section.

Measured charged current total cross section.

No description provided.

More…

Nucleon structure functions from high energy neutrino interactions

Oltman, E. ; Auchincloss, Priscilla S. ; Blair, R.E. ; et al.
Z.Phys.C 53 (1992) 51-71, 1992.
Inspire Record 335706 DOI 10.17182/hepdata.1433

Structure functions obtained from high energy neutrino and antineutrino scattering from an iron target are presented. These were extracted from the combined data of Fermilab experiments E616 and E701; these utilized narrow band beam runs between 1979–1982. The structure functions are used to test the validity of quarkparton model (QPM) predictions and to extract the QCD scale parameter Λ from fits to the Altarelli-Parisi equations.

22 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the Structure Functions F2 and Xf3 and Comparison With {QCD} Predictions Including Kinematical and Dynamical Higher Twist Effects

The BEBC WA59 collaboration Varvell, K. ; Cooper-Sarkar, A.M. ; Parker, M.A. ; et al.
Z.Phys.C 36 (1987) 1, 1987.
Inspire Record 245094 DOI 10.17182/hepdata.15775

The isoscalar nucleon structure functionsF2(x, Q2) andxF3(x, Q2) are measured in the range 0<Q2<64 GeV2, 1.7<W2<250 GeV2,x<0.7 using ν and\(\bar v\) interactions on neon in BEBC. The data are used to evaluate possible higher twist contributions and to determine their impact on the evaluation of the QCD parameter Λ. In contrast to previous analyses reaching to such lowW2 values, it is found that a low\(\Lambda _{\overline {MS} } \) value in the neighbourhood of 100 MeV describes the data adequately and that the contribution of dynamical higher twist effects is small and negative.

9 data tables

No description provided.

No description provided.

No description provided.

More…

INCLUSIVE STUDY OF NEUTRINO AND ANTI-NEUTRINO INTERACTIONS WITH NUCLEI AT ENERGIES E anti-neutrino <= 30-GeV

Ammosov, V.V. ; Baranov, D.S. ; Bugorsky, A.P. ; et al.
Z.Phys.C 30 (1986) 175, 1986.
Inspire Record 215974 DOI 10.17182/hepdata.15918

None

6 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of $\nu$ and $\bar{\nu}$ structure functions in hydrogen and iron

Abramowicz, H. ; Hansl-Kozanecka, T. ; May, J. ; et al.
Z.Phys.C 25 (1984) 29-43, 1984.
Inspire Record 201386 DOI 10.17182/hepdata.49653

The CDHS neutrino detector has been used to measure events originating in a tank of liquid hydrogen and in the iron of the detector. Total cross-sections, differential cross-sections, and structure functions are given for hydrogen and compared with those in iron. The measurements are in agreement with the expectations of the quark parton model. No significant differences indicative of nuclear binding effects in corresponding structure functions of protons and iron are observed. This may be of special interest in the case of the sea structure functions, since large differences are expected in some models.

5 data tables

No description provided.

No description provided.

No description provided.

More…

ANALYSIS OF SCALING VIOLATION IN NUCLEON STRUCTURE FUNCTIONS

Ammosov, V.v. ; Gapienko, V.a. ; Gapienko, G.s. ; et al.
JETP Lett. 36 (1982) 367-371, 1982.
Inspire Record 185559 DOI 10.17182/hepdata.39758

None

2 data tables

No description provided.

No description provided.


Neutrino and anti-neutrinos Charged Current Inclusive Scattering in Iron in the Energy Range 20-GeV < Neutrino Energy < 300-GeV

Abramowicz, H. ; de Groot, J.G.H. ; Knobloch, J. ; et al.
Z.Phys.C 17 (1983) 283, 1983.
Inspire Record 182549 DOI 10.17182/hepdata.2213

Inclusive charged-current interactions of high-energy neutrinos and antineutrinos have been studied with high statistics in a counter experiment at the CERN Super Proton Synchrotron. The energy dependence of the total cross-sections, the longitudinal structure function, and the nucleon structure functionsF2,xF3, and\(\bar q^{\bar v} \) are determined from these data. The analysis of theQ2-dependence of the structure functions is used to test quantum chromodynamics, to determine the scale parameter Λ and the gluon distribution in the nucleon.

50 data tables

ABSOLUTE FLUXES HAVE NOT BEEN MEASURED. NORMALISED TO OLD RESULTS.

STUCTURE FUNCTIONS ARE EVALUATED ASSUMING R=SIG(L)/SIG(T)=0.1 AND M(W) IS INFINITE. NO CORRECTION FOR FERMI MOTION APPLIED. ERRORS ARE STATISTICAL AND SYSTEMATIC POINT-TO-POINT ERRORS. IN ADDITION OVER-ALL SCALE ERROR OF 6 PCT. FOR F2 , 8 PCT. FOR XF3.

STUCTURE FUNCTIONS ARE EVALUATED ASSUMING R=SIG(L)/SIG(T)=0.1 AND M(W) IS INFINITE. NO CORRECTION FOR FERMI MOTION APPLIED. ERRORS ARE STATISTICAL AND SYSTEMATIC POINT-TO-POINT ERRORS. IN ADDITION OVER-ALL SCALE ERROR OF 6 PCT. FOR F2 , 8 PCT. FOR XF3.

More…

Data on the Gross-llewellyn Smith Sum Rule as a Function of $q^2$

The Aachen-Bonn-CERN-Democritos-London-Oxford-Saclay collaboration Bolognese, T. ; Fritze, P. ; Morfin, J. ; et al.
Phys.Rev.Lett. 50 (1983) 224, 1983.
Inspire Record 178566 DOI 10.17182/hepdata.20544

Data are presented on the Gross-Llewellyn Smith sum rule obtained from combined narrow-band neon and Freon bubble-chamber neutrino-antineutrino experiments. Remarkably no significant deviation from the parton-model prediction for the sum rule is observed at very low values of q2≲1 GeV2. Limits on the effective QCD scale parameter Λ and on the magnitude of the twist-4 correction are set. The best fit, neglecting higher-twist contributions, gives Λ=92−36+20 MeV.

1 data table

NACHTMANN MOMENT IS EVALUATED (IE TARGET MASS COEERCTIONS INCLUDED).