Search for new physics in high-mass diphoton events from proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-22-024, 2024.
Inspire Record 2787227 DOI 10.17182/hepdata.150677

Results are presented from a search for new physics in high-mass diphoton events from proton-proton collisions at $\sqrt{s}$ = 13 TeV. The data set was collected in 2016-2018 with the CMS detector at the LHC and corresponds to an integrated luminosity of 138 fb$^{-1}$. Events with a diphoton invariant mass greater than 500\GeV are considered. Two different techniques are used to predict the standard model backgrounds: parametric fits to the smoothly-falling background and a first-principles calculation of the standard model diphoton spectrum at next-to-next-to-leading order in perturbative quantum chromodynamics calculations. The first technique is sensitive to resonant excesses while the second technique can identify broad differences in the invariant mass shape. The data are used to constrain the production of heavy Higgs bosons, Randall-Sundrum gravitons, the large extra dimensions model of Arkani-Hamed, Dimopoulos, and Dvali (ADD), and the continuum clockwork mechanism. No statistically significant excess is observed. The present results are the strongest limits to date on ADD extra dimensions and RS gravitons with a coupling parameter greater than 0.1.

16 data tables

The product of the event selection efficiency (e) and the detector acceptance (A) is shown as a function of the signal resonance mass mX for the narrow signal width hypothesis ($\Gamma_{X}/m_{X} = 1.4 x 10^{4}$ for J = 0 and $~k = 0.01$ for J = 2). The total (black), EBEB (red), and EBEE (blue) curves are shown for spin (J) hypotheses J = 0 (solid) and J = 2 (dashed).

Figure 2: Observed diphoton invariant mass spectra for the EBEB category for the full Run 2 data set are shown. Also shown are the results of a likelihood fit to the background-only hypothesis. The black, red, green and blue lines indicate the result of the fit functions f1, f2, f3, and f4, respectively. The lower panels show the difference between the data and f1 fit, divided by the statistical uncertainty in the data points. dijet f1 = 0.13116092* pow(x,5.7466302555276645-0.7807885712668643*log(x)), expow1 f2 = 7.3165496e+10*exp(-0.0016273075*x)*pow(x, -1*1.8233539*1.8233539), invpow1 f3 = 8760.6423*(pow(1+x*0.0022831415,-1.*2.7013689*2.7013689)), invpowlin1 f4 = 2124447.3*(pow(1+0.029456453*x,-3.8645171-0.00027603566*x)).

Figure 2: Observed diphoton invariant mass spectra for the EBEE category for the full Run 2 data set are shown. Also shown are the results of a likelihood fit to the background-only hypothesis. The black, red, green and blue lines indicate the result of the fit functions f1, f2, f3, and f4, respectively. The lower panels show the difference between the data and f1 fit, divided by the statistical uncertainty in the data points. dijet f1 = 1.81866e-22*pow(x,19.5547-1.7634*log(x)), expow1 f2 = 69750*exp(-0.00368224*x)*pow(x, -1.*0.975269*0.975269, invpow1 f3 = 508.838*pow(1+x*0.000294278,-1.*4.5514*4.5514), invpowlin1 f4 = 470.588*pow(1+x* 5.07338e-05,-114.601+0.00817169*x)

More…

Searches for Higgs Boson Production through Decays of Heavy Resonances

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-B2G-23-002, 2024.
Inspire Record 2771692 DOI 10.17182/hepdata.146897

The discovery of the Higgs boson has led to new possible signatures for heavy resonance searches at the LHC. Since then, search channels including at least one Higgs boson plus another particle have formed an important part of the program of new physics searches. In this report, the status of these searches by the CMS Collaboration is reviewed. Searches are discussed for resonances decaying to two Higgs bosons, a Higgs and a vector boson, or a Higgs boson and another new resonance, with proton-proton collision data collected at $\sqrt{s}$ = 13 TeV in the years 2016-2018. A combination of the results of these searches is presented together with constraints on different beyond-the-standard model scenarios, including scenarios with extended Higgs sectors, heavy vector bosons and extra dimensions. Studies are shown for the first time by CMS on the validity of the narrow-width approximation in searches for the resonant production of a pair of Higgs bosons. The potential for a discovery at the High Luminosity LHC is also discussed.

6 data tables

Upper limits on σB for a spin-0 resonance X obtained from the combination of the individual channels. The 68 and 95% CL intervals on the expected upper limits are shown as colored bands.

Upper limits on σB for a spin-2 resonance G obtained from the combination of the individual channels. The 68 and 95% CL intervals on the expected upper limits are shown as colored bands.

Upper limits at 95% CL on $\sigma$B(pp→X→Y(bb)H) for combination as a function of m$_Y$.

More…

Observation of the J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-22-006, 2024.
Inspire Record 2769595 DOI 10.17182/hepdata.147273

The J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb${-1}$. Normalizing to the J/$\psi$$\to$$\mu^+\mu^-$ decay mode leads to a branching fraction [10.1$^{+3.3}_{-2.7}$ (stat) $\pm$ 0.4 (syst) ]$\times$ 10$^{-7}$, a value that is consistent with the standard model prediction.

2 data tables

$\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu\mu\mu$ branching fraction

$\mathcal{B}(\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu\mu\mu)$ / $\mathcal{B}(\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu)$ ratio


Search for long-lived heavy neutrinos in the decays of B mesons produced in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-22-019, 2024.
Inspire Record 2766369 DOI 10.17182/hepdata.147308

A search for long-lived heavy neutrinos (N) in the decays of \PB mesons produced in proton-proton collisions at $\sqrt{s}$ = 13 TeV is presented. The data sample corresponds to an integrated luminosity of 41.6 fb$^{-1}$ collected in 2018 by the CMS experiment at the CERN LHC, using a dedicated data stream that enhances the number of recorded events containing B mesons. The search probes heavy neutrinos with masses in the range 1 $\lt$$m_\mathrm{N}$$\lt$ 3 GeV and decay lengths in the range 10$^{-2}$$\lt$$c\tau$$\lt$ 10$^{4}$ mm, where $\tau_\mathrm{N}$ is the N proper mean lifetime. Signal events are defined by the signature B $\to$$\ell_\mathrm{B}$NX; N $\to$$\ell^{\pm} \pi^{\mp}$, where the leptons $\ell_\mathrm{B}$ and $\ell$ can be either a muon or an electron, provided that at least one of them is a muon. The hadronic recoil system, X, is treated inclusively and is not reconstructed. No significant excess of events over the standard model background is observed in any of the $\ell^{\pm}\pi^{\mp}$ invariant mass distributions. Limits at 95% confidence level on the sum of the squares of the mixing amplitudes between heavy and light neutrinos, $\vert V_\mathrm{N}\vert^2$, and on $c\tau$ are obtained in different mixing scenarios for both Majorana and Dirac-like N particles. The most stringent upper limit $\vert V_\mathrm{N}\vert^2$ $\lt$ 2.0$\times$10$^{-5}$ is obtained at $m_\mathrm{N}$ = 1.95 GeV for the Majorana case where N mixes exclusively with muon neutrinos. The limits on $\vert V_\mathrm{N}\vert^2$ for masses 1 $\lt$ $m_\mathrm{N}$ $\lt$ 1.7 GeV are the most stringent from a collider experiment to date.

14 data tables

Expected and observed 95% CL upper limits on $|V_\mathrm{N}|^2$ as a function of $m_\mathrm{N}$ for the mixing scenario ($r_e$, $r_\mu$, $r_\tau$) = (0.0, 1.0, 0.0) and in the Majorana scenario.

Expected and observed 95% CL upper limits on $|V_\mathrm{N}|^2$ as a function of $m_\mathrm{N}$ for the mixing scenario ($r_e$, $r_\mu$, $r_\tau$) = (0.0, 0.5, 0.5) and in the Majorana scenario.

Expected and observed 95% CL upper limits on $|V_\mathrm{N}|^2$ as a function of $m_\mathrm{N}$ for the mixing scenario ($r_e$, $r_\mu$, $r_\tau$) = (0.5, 0.5, 0.0) and in the Majorana scenario.

More…

Measurement of prompt open-charm production cross sections in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Ambrogi, Federico ; et al.
JHEP 11 (2021) 225, 2021.
Inspire Record 1876550 DOI 10.17182/hepdata.104924

The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13 TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb$^{-1}$. The differential production cross sections of the D$^{*\pm}$, D$^\pm$, and D$^0$ ($\overline{\mathrm{D}}^{0}$) mesons are presented in ranges of transverse momentum and pseudorapidity 4 $\lt$$p_\mathrm{T}$$\lt$ 100 GeV and $\lvert\eta\rvert$$\lt$ 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.

2 data tables

The differential cross sections of prompt D^{*+} plus D^{*-}, D0 + bar{D0}, and D+ + D-production in pT bins with |eta| < 2.1;the first uncertainty is statistical, the second is systematic.

The differential cross sections of prompt D^{*+} plus D^{*-}, D0 + bar{D0}, and D+ + D-production in |eta| bins with 4 < pT < 100 GeV;the first uncertainty is statistical, the second is systematic.


Measurements of the associated production of a W boson and a charm quark in proton-proton collisions at $\sqrt{s}$ = 8 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Bergauer, Thomas ; et al.
Eur.Phys.J.C 82 (2022) 1094, 2022.
Inspire Record 1982672 DOI 10.17182/hepdata.114364

Measurements of the associated production of a W boson and a charm (c) quark in proton-proton collisions at a centre-of-mass energy of 8 TeV are reported. The analysis uses a data sample corresponding to a total integrated luminosity of 19.7 fb$^{-1}$ collected by the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm quark jets are selected using distinctive signatures of charm hadron decays. The product of the cross section and branching fraction $\sigma$(pp $\to$ W + c + X) $\mathcal{B}$(W $\to$$\ell\nu$), where $\ell$ = e or $\mu$, and the cross section ratio $\sigma$(pp $\to$ W$^+$ + c + X) / $\sigma$(pp $\to$ W$^-$ + $\mathrm{\bar{c}}$ + X) are measured inclusively and differentially as functions of the pseudorapidity and of the transverse momentum of the lepton from the W boson decay. The results are compared with theoretical predictions. The impact of these measurements on the determination of the strange quark distribution is assessed.

6 data tables

Signal yields after background subtraction, efficiency*acceptance correction factors, and cross section measurements for the four channels (W decay to muon or electron and charm identification via muon or secondary vertex inside a jet).

Measured production cross sections $\sigma(W^+ + \overline{c})$, $\sigma(W^- + c)$ and their ratio.

Measured diferential cross sections $\sigma(W^- + c) + \sigma(W^+ + \overline{c})$ as a function of the absolute value of the pseudorapidity of the lepton from the W decay.

More…

Measurement of the average very forward energy as a function of the track multiplicity at central pseudorapidities in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 79 (2019) 893, 2019.
Inspire Record 1747892 DOI 10.17182/hepdata.91963

The average total energy as well as its hadronic and electromagnetic components are measured with the CMS detector at pseudorapidities $-$6.6 $<\eta<-$5.2 in proton-proton collisions at a centre-of-mass energy $\sqrt{s}=$ 13 TeV. The results are presented as a function of the charged particle multiplicity in the region $|\eta|< $2. This measurement is sensitive to correlations induced by the underlying event structure over a very wide pseudorapidity region. The predictions of Monte Carlo event generators commonly used in collider experiments and ultra-high energy cosmic ray physics are compared to the data.

5 data tables

Average total energy reconstructed in the region −6.6 < eta < −5.2 as a function of the number of reconstructed tracks for abs(eta)<2.

Average total energiy reconstructed in the region −6.6 < eta < −5.2 normalised to that in the first bin (Nch< 10) as a function of the number of reconstructed tracks for abs(eta)<2.

Average electromagnetic energy reconstructed in the region −6.6 < eta < −5.2 as a function of the number of reconstructed tracks for abs(eta)<2.

More…

Version 2
Measurement of the $\mathrm{t\bar{t}}\mathrm{b\bar{b}}$ production cross section in the all-jet final state in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 803 (2020) 135285, 2020.
Inspire Record 1753720 DOI 10.17182/hepdata.91630

A measurement of the production cross section of top quark pairs in association with two b jets ($\mathrm{t\bar{t}}\mathrm{b\bar{b}}$) is presented using data collected in proton-proton collisions at $\sqrt{s} =$ 13 TeV by the CMS detector at the LHC corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The cross section is measured in the all-jet decay channel of the top quark pair by selecting events containing at least eight jets, of which at least two are identified as originating from the hadronization of b quarks. A combination of multivariate analysis techniques is used to reduce the large background from multijet events not containing a top quark pair, and to help discriminate between jets originating from top quark decays and other additional jets. The cross section is determined for the total phase space to be 5.5 $\pm$ 0.3 (stat)${}^{+1.6}_{-1.3}$ (syst) pb and also measured for two fiducial $\mathrm{t\bar{t}}\mathrm{b\bar{b}}$ definitions. The measured cross sections are found to be larger than theoretical predictions by a factor of 1.5-2.4, corresponding to 1-2 standard deviations.

2 data tables

The measured cross sections. The first uncertainty is statistical, the second uncertianty is the systematic.

The measured cross sections. The first uncertainty is statistical, the second uncertianty is the systematic.


Version 2
Measurements of angular distance and momentum ratio distributions in three-jet and Z + two-jet final states in pp collisions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 81 (2021) 852, 2021.
Inspire Record 1847230 DOI 10.17182/hepdata.106642

Collinear (small-angle) and large-angle, as well as soft and hard radiations are investigated in three-jet and Z + two-jet events collected in proton-proton collisions at the LHC. The normalized production cross sections are measured as a function of the ratio of transverse momenta of two jets and their angular separation. The measurements in the three-jet and Z + two-jet events are based on data collected at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.8 fb$^{-1}$. The Z + two-jet events are reconstructed in the dimuon decay channel of the Z boson. The three-jet measurement is extended to include $\sqrt{s} =$ 13 TeV data corresponding to an integrated luminosity of 2.3 fb$^{-1}$. The results are compared to predictions from event generators that include parton showers, multiple parton interactions, and hadronization. The collinear and soft regions are in general well described by parton showers, whereas the regions of large angular separation are often best described by calculations using higher-order matrix elements.

24 data tables

Three-jet events $p_{\mathrm{T}3}/p_{\mathrm{T}2}$ for small-angle radiation ($\Delta R_{23}$ < 1.0)

Three-jet events $p_{\mathrm{T}3}/p_{\mathrm{T}2}$ for small-angle radiation ($\Delta R_{23}$ < 1.0)

Three-jet events $p_{\mathrm{T}3}/p_{\mathrm{T}2}$ for large-angle radiation ($\Delta R_{23}$ > 1.0)

More…

Three-particle coincidence of the long range pseudorapidity correlation in high energy nucleus-nucleus collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 105 (2010) 022301, 2010.
Inspire Record 840812 DOI 10.17182/hepdata.102404

We report the first three-particle coincidence measurement in pseudorapidity ($\Delta\eta$) between a high transverse momentum ($p_{\perp}$) trigger particle and two lower $p_{\perp}$ associated particles within azimuth $\mid$$\Delta\phi$$\mid$$&lt;$0.7 in $\sqrt{{\it s}_{NN}}$ = 200 GeV $d$+Au and Au+Au collisions. Charge ordering properties are exploited to separate the jet-like component and the ridge (long-range $\Delta\eta$ correlation). The results indicate that the particles from the ridge are uncorrelated in $\Delta\eta$ not only with the trigger particle but also between themselves event-by-event. In addition, the production of the ridge appears to be uncorrelated to the presence of the narrow jet-like component.

15 data tables

Correlated hadron distribution in ∆φ(|η|<1 with a high-p⊥trigger particle in 0-12% Au+Au collisions for 3<p(t)⊥<10 GeV/cand 1<p(a)⊥<3GeV/c. The ZYA1-normalized flow background is shown by the curve.

Correlated hadron distribution ∆η(|∆φ|<0.7) with a high-p⊥ trigger particle in 0-12% Au+Au collisions for 3<p(t)⊥<10 GeV/c and 1<p(a)⊥<3GeV/c. The ∆η distributions are background subtracted and corrected for ∆η acceptance and are for like and unlike-sign pairs separately. The curves in are Gaussian fits. Errors are statistical.

Background-subtracted charge-independent (AAT ) correlated hadron pair density in minimum bias d+Au collisions for 3<p(t)⊥<10 GeV/cand 1<p(a)⊥<3 GeV/c. The results are for near-side correlated hadrons within |∆φ1,2|<0.7, and corrected for the 3-particle ∆η-∆η acceptance. Statistical errors at (∆η1,∆η2)∼(0,0)are approximately 0.033 for d+Au respectively.

More…