Searches for Higgs Boson Production through Decays of Heavy Resonances

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-B2G-23-002, 2024.
Inspire Record 2771692 DOI 10.17182/hepdata.146897

The discovery of the Higgs boson has led to new possible signatures for heavy resonance searches at the LHC. Since then, search channels including at least one Higgs boson plus another particle have formed an important part of the program of new physics searches. In this report, the status of these searches by the CMS Collaboration is reviewed. Searches are discussed for resonances decaying to two Higgs bosons, a Higgs and a vector boson, or a Higgs boson and another new resonance, with proton-proton collision data collected at $\sqrt{s}$ = 13 TeV in the years 2016-2018. A combination of the results of these searches is presented together with constraints on different beyond-the-standard model scenarios, including scenarios with extended Higgs sectors, heavy vector bosons and extra dimensions. Studies are shown for the first time by CMS on the validity of the narrow-width approximation in searches for the resonant production of a pair of Higgs bosons. The potential for a discovery at the High Luminosity LHC is also discussed.

6 data tables

Upper limits on σB for a spin-0 resonance X obtained from the combination of the individual channels. The 68 and 95% CL intervals on the expected upper limits are shown as colored bands.

Upper limits on σB for a spin-2 resonance G obtained from the combination of the individual channels. The 68 and 95% CL intervals on the expected upper limits are shown as colored bands.

Upper limits at 95% CL on $\sigma$B(pp→X→Y(bb)H) for combination as a function of m$_Y$.

More…

Observation of the J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-22-006, 2024.
Inspire Record 2769595 DOI 10.17182/hepdata.147273

The J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb${-1}$. Normalizing to the J/$\psi$$\to$$\mu^+\mu^-$ decay mode leads to a branching fraction [10.1$^{+3.3}_{-2.7}$ (stat) $\pm$ 0.4 (syst) ]$\times$ 10$^{-7}$, a value that is consistent with the standard model prediction.

2 data tables

$\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu\mu\mu$ branching fraction

$\mathcal{B}(\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu\mu\mu)$ / $\mathcal{B}(\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu)$ ratio


Search for long-lived heavy neutrinos in the decays of B mesons produced in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-22-019, 2024.
Inspire Record 2766369 DOI 10.17182/hepdata.147308

A search for long-lived heavy neutrinos (N) in the decays of \PB mesons produced in proton-proton collisions at $\sqrt{s}$ = 13 TeV is presented. The data sample corresponds to an integrated luminosity of 41.6 fb$^{-1}$ collected in 2018 by the CMS experiment at the CERN LHC, using a dedicated data stream that enhances the number of recorded events containing B mesons. The search probes heavy neutrinos with masses in the range 1 $\lt$$m_\mathrm{N}$$\lt$ 3 GeV and decay lengths in the range 10$^{-2}$$\lt$$c\tau$$\lt$ 10$^{4}$ mm, where $\tau_\mathrm{N}$ is the N proper mean lifetime. Signal events are defined by the signature B $\to$$\ell_\mathrm{B}$NX; N $\to$$\ell^{\pm} \pi^{\mp}$, where the leptons $\ell_\mathrm{B}$ and $\ell$ can be either a muon or an electron, provided that at least one of them is a muon. The hadronic recoil system, X, is treated inclusively and is not reconstructed. No significant excess of events over the standard model background is observed in any of the $\ell^{\pm}\pi^{\mp}$ invariant mass distributions. Limits at 95% confidence level on the sum of the squares of the mixing amplitudes between heavy and light neutrinos, $\vert V_\mathrm{N}\vert^2$, and on $c\tau$ are obtained in different mixing scenarios for both Majorana and Dirac-like N particles. The most stringent upper limit $\vert V_\mathrm{N}\vert^2$ $\lt$ 2.0$\times$10$^{-5}$ is obtained at $m_\mathrm{N}$ = 1.95 GeV for the Majorana case where N mixes exclusively with muon neutrinos. The limits on $\vert V_\mathrm{N}\vert^2$ for masses 1 $\lt$ $m_\mathrm{N}$ $\lt$ 1.7 GeV are the most stringent from a collider experiment to date.

14 data tables

Expected and observed 95% CL upper limits on $|V_\mathrm{N}|^2$ as a function of $m_\mathrm{N}$ for the mixing scenario ($r_e$, $r_\mu$, $r_\tau$) = (0.0, 1.0, 0.0) and in the Majorana scenario.

Expected and observed 95% CL upper limits on $|V_\mathrm{N}|^2$ as a function of $m_\mathrm{N}$ for the mixing scenario ($r_e$, $r_\mu$, $r_\tau$) = (0.0, 0.5, 0.5) and in the Majorana scenario.

Expected and observed 95% CL upper limits on $|V_\mathrm{N}|^2$ as a function of $m_\mathrm{N}$ for the mixing scenario ($r_e$, $r_\mu$, $r_\tau$) = (0.5, 0.5, 0.0) and in the Majorana scenario.

More…

Measurement of prompt open-charm production cross sections in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Ambrogi, Federico ; et al.
JHEP 11 (2021) 225, 2021.
Inspire Record 1876550 DOI 10.17182/hepdata.104924

The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13 TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb$^{-1}$. The differential production cross sections of the D$^{*\pm}$, D$^\pm$, and D$^0$ ($\overline{\mathrm{D}}^{0}$) mesons are presented in ranges of transverse momentum and pseudorapidity 4 $\lt$$p_\mathrm{T}$$\lt$ 100 GeV and $\lvert\eta\rvert$$\lt$ 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.

2 data tables

The differential cross sections of prompt D^{*+} plus D^{*-}, D0 + bar{D0}, and D+ + D-production in pT bins with |eta| < 2.1;the first uncertainty is statistical, the second is systematic.

The differential cross sections of prompt D^{*+} plus D^{*-}, D0 + bar{D0}, and D+ + D-production in |eta| bins with 4 < pT < 100 GeV;the first uncertainty is statistical, the second is systematic.


Measurements of the associated production of a W boson and a charm quark in proton-proton collisions at $\sqrt{s}$ = 8 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Bergauer, Thomas ; et al.
Eur.Phys.J.C 82 (2022) 1094, 2022.
Inspire Record 1982672 DOI 10.17182/hepdata.114364

Measurements of the associated production of a W boson and a charm (c) quark in proton-proton collisions at a centre-of-mass energy of 8 TeV are reported. The analysis uses a data sample corresponding to a total integrated luminosity of 19.7 fb$^{-1}$ collected by the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm quark jets are selected using distinctive signatures of charm hadron decays. The product of the cross section and branching fraction $\sigma$(pp $\to$ W + c + X) $\mathcal{B}$(W $\to$$\ell\nu$), where $\ell$ = e or $\mu$, and the cross section ratio $\sigma$(pp $\to$ W$^+$ + c + X) / $\sigma$(pp $\to$ W$^-$ + $\mathrm{\bar{c}}$ + X) are measured inclusively and differentially as functions of the pseudorapidity and of the transverse momentum of the lepton from the W boson decay. The results are compared with theoretical predictions. The impact of these measurements on the determination of the strange quark distribution is assessed.

6 data tables

Signal yields after background subtraction, efficiency*acceptance correction factors, and cross section measurements for the four channels (W decay to muon or electron and charm identification via muon or secondary vertex inside a jet).

Measured production cross sections $\sigma(W^+ + \overline{c})$, $\sigma(W^- + c)$ and their ratio.

Measured diferential cross sections $\sigma(W^- + c) + \sigma(W^+ + \overline{c})$ as a function of the absolute value of the pseudorapidity of the lepton from the W decay.

More…

Measurement of the average very forward energy as a function of the track multiplicity at central pseudorapidities in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 79 (2019) 893, 2019.
Inspire Record 1747892 DOI 10.17182/hepdata.91963

The average total energy as well as its hadronic and electromagnetic components are measured with the CMS detector at pseudorapidities $-$6.6 $<\eta<-$5.2 in proton-proton collisions at a centre-of-mass energy $\sqrt{s}=$ 13 TeV. The results are presented as a function of the charged particle multiplicity in the region $|\eta|< $2. This measurement is sensitive to correlations induced by the underlying event structure over a very wide pseudorapidity region. The predictions of Monte Carlo event generators commonly used in collider experiments and ultra-high energy cosmic ray physics are compared to the data.

5 data tables

Average total energy reconstructed in the region −6.6 < eta < −5.2 as a function of the number of reconstructed tracks for abs(eta)<2.

Average total energiy reconstructed in the region −6.6 < eta < −5.2 normalised to that in the first bin (Nch< 10) as a function of the number of reconstructed tracks for abs(eta)<2.

Average electromagnetic energy reconstructed in the region −6.6 < eta < −5.2 as a function of the number of reconstructed tracks for abs(eta)<2.

More…

Azimuthal anisotropy at RHIC: The first and fourth harmonics.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 127 (2021) 069901, 2021.
Inspire Record 631713 DOI 10.17182/hepdata.102322

We report the first observations of the first harmonic (directed flow, v_1), and the fourth harmonic (v_4), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v_2) generated at RHIC. From the correlation of v_2 with v_1 it is determined that v_2 is positive, or {\it in-plane}. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.

6 data tables

$v_1$ of charged particles as a function of pseudorapidity for 10-70% centrality. Non-flow systematic uncertainties are approximately 20%.

$v_2$ with respect to the second harmonic event plane as a function of $p_T$ for the minimum bias Au+Au collisions. Background from secondary particles is expected to be less than 15%. Non-flow systematic uncertainties are approximately 20%. Fluctuations in initial geometry can lead to an effect of about a factor of 1.2 to 1.5.

$v_4$ with respect to the second harmonic event plane as a function of $p_T$ for the minimum bias Au+Au collisions. Background from secondary particles is expected to be less than 15%. Non-flow systematic uncertainties are approximately 20%. Fluctuations in initial geometry can lead to an effect of about a factor of 1.2 to 1.5.

More…

Version 2
Measurement of the $\mathrm{t\bar{t}}\mathrm{b\bar{b}}$ production cross section in the all-jet final state in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 803 (2020) 135285, 2020.
Inspire Record 1753720 DOI 10.17182/hepdata.91630

A measurement of the production cross section of top quark pairs in association with two b jets ($\mathrm{t\bar{t}}\mathrm{b\bar{b}}$) is presented using data collected in proton-proton collisions at $\sqrt{s} =$ 13 TeV by the CMS detector at the LHC corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The cross section is measured in the all-jet decay channel of the top quark pair by selecting events containing at least eight jets, of which at least two are identified as originating from the hadronization of b quarks. A combination of multivariate analysis techniques is used to reduce the large background from multijet events not containing a top quark pair, and to help discriminate between jets originating from top quark decays and other additional jets. The cross section is determined for the total phase space to be 5.5 $\pm$ 0.3 (stat)${}^{+1.6}_{-1.3}$ (syst) pb and also measured for two fiducial $\mathrm{t\bar{t}}\mathrm{b\bar{b}}$ definitions. The measured cross sections are found to be larger than theoretical predictions by a factor of 1.5-2.4, corresponding to 1-2 standard deviations.

2 data tables

The measured cross sections. The first uncertainty is statistical, the second uncertianty is the systematic.

The measured cross sections. The first uncertainty is statistical, the second uncertianty is the systematic.


Version 2
Measurements of angular distance and momentum ratio distributions in three-jet and Z + two-jet final states in pp collisions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 81 (2021) 852, 2021.
Inspire Record 1847230 DOI 10.17182/hepdata.106642

Collinear (small-angle) and large-angle, as well as soft and hard radiations are investigated in three-jet and Z + two-jet events collected in proton-proton collisions at the LHC. The normalized production cross sections are measured as a function of the ratio of transverse momenta of two jets and their angular separation. The measurements in the three-jet and Z + two-jet events are based on data collected at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.8 fb$^{-1}$. The Z + two-jet events are reconstructed in the dimuon decay channel of the Z boson. The three-jet measurement is extended to include $\sqrt{s} =$ 13 TeV data corresponding to an integrated luminosity of 2.3 fb$^{-1}$. The results are compared to predictions from event generators that include parton showers, multiple parton interactions, and hadronization. The collinear and soft regions are in general well described by parton showers, whereas the regions of large angular separation are often best described by calculations using higher-order matrix elements.

24 data tables

Three-jet events $p_{\mathrm{T}3}/p_{\mathrm{T}2}$ for small-angle radiation ($\Delta R_{23}$ < 1.0)

Three-jet events $p_{\mathrm{T}3}/p_{\mathrm{T}2}$ for small-angle radiation ($\Delta R_{23}$ < 1.0)

Three-jet events $p_{\mathrm{T}3}/p_{\mathrm{T}2}$ for large-angle radiation ($\Delta R_{23}$ > 1.0)

More…

Enhanced strange baryon production in Au+Au collisions compared to p+p at sqrts = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 77 (2008) 044908, 2008.
Inspire Record 750816 DOI 10.17182/hepdata.105866

We report on the observed differences in production rates of strange and multi-strange baryons in Au+Au collisions at sqrts = 200 GeV compared to pp interactions at the same energy. The strange baryon yields in Au+Au collisions, then scaled down by the number of participating nucleons, are enhanced relative to those measured in pp reactions. The enhancement observed increases with the strangeness content of the baryon, and increases for all strange baryons with collision centrality. The enhancement is qualitatively similar to that observed at lower collision energy sqrts =17.3 GeV. The previous observations are for the bulk production, while at intermediate pT, 1 < pT< 4 GeV/c, the strange baryons even exceed binary scaling from pp yields.

18 data tables

Midrapidity E(i) as a function of $<N_{part}>$ for $\Lambda$, $\bar{\Lambda}$ ($|y| < 1.0$), $\Xi^{-}$, $\bar{\Xi}^{+}$ ($|y| < 0.75$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature. Grand Canonical Model arrows(values in brackets), for $\Lambda$ E(2.6) and T(165 MeV) for $\bar{\Lambda}$ E(2.2) and T(170 MeV), for $\Xi$ E(10.7) and T(165 MeV), for anti-$\Xi$ E(7.5) and T(170 MeV).

Midrapidity E(i) as a function of $<N_{part}>$ for $\Omega^{-}+\bar{\Omega}^{+}$ ($|y| < 0.75$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature.

Midrapidity E(i) as a function of $<N_{part}>$ for inclusive $p$ ($|y| < 0.5$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature.

More…

Version 2
Long range rapidity correlations and jet production in high energy nuclear collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 064912, 2009.
Inspire Record 830070 DOI 10.17182/hepdata.101345

The STAR Collaboration at RHIC presents a systematic study of high transverse momentum charged di-hadron correlations at small azimuthal pair separation \dphino, in d+Au and central Au+Au collisions at $\rts = 200$ GeV. Significant correlated yield for pairs with large longitudinal separation \deta is observed in central Au+Au, in contrast to d+Au collisions. The associated yield distribution in \detano$\times$\dphi can be decomposed into a narrow jet-like peak at small angular separation which has a similar shape to that found in d+Au collisions, and a component which is narrow in \dphi and \textcolor{black}{depends only weakly on} $\deta$, the 'ridge'. Using two systematically independent analyses, \textcolor{black}{finite ridge yield} is found to persist for trigger $\pt > 6$ \GeVc, indicating that it is correlated with jet production. The transverse momentum spectrum of hadrons comprising the ridge is found to be similar to that of bulk particle production in the measured range ($2 < \pt < 4 \GeVc$).

7 data tables

FIG. $2: \quad Y_{\text {slice }}(\Delta \eta ; \delta=0.3)$ (Eq. 5 ) for central Au+Au collisions, $2 \mathrm{GeV} / \mathrm{c}<p_{t}^{a s s o c}<p_{t}^{t r i g}$, and various $p_{t}^{t r i g}$ vs. $\Delta \eta$; the shaded bands represents the systematic uncertainties due to $v_{2}$ (not shown for $6<p_{t}^{\text {trig }}<10 \mathrm{GeV} / \mathrm{c}$ ). The solid and dashed lines represents a constant or linear fit to $1<|\Delta \eta|$ $<1.8$; only shown for $3<p_{t}^{t r i g}<4 \mathrm{GeV} / c$ (see text). Some data points are displaced horizontally for clarity.

FIG. 3. Left panel: width of Gaussian fit to jet-like peak for Eq. (6) $(\Delta \eta$ width, circles) and Eq. (7) $(\Delta \phi$ width, triangles) ; $ 2 \mathrm{GeV}/c<p_{t}^{\text{assoc}}<p_{t}^{\text {trig }}$, as a function of $p_{t}^{\text {trig }},$ for central $\mathrm{Au}+$ Au collisions (filled symbols) and $d+$ Au collisions (open symbols). Some data points are displaced horizontally for clarity. Right panel: the distributions of Eqs. (6) and (7) for $4<p_{t}^{\text {trig }}<5 \mathrm{GeV} / c$ and $2 \mathrm{GeV} / c<p_{t}^{\text {assoc }}<p_{t}^{\text {trig }}$.

FIG. 3. Left panel: width of Gaussian fit to jet-like peak for Eq. (6) $(\Delta \eta$ width, circles) and Eq. (7) $(\Delta \phi$ width, triangles) ; $ 2 \mathrm{GeV}/c<p_{t}^{\text{assoc}}<p_{t}^{\text {trig }}$, as a function of $p_{t}^{\text {trig }},$ for central $\mathrm{Au}+$ Au collisions (filled symbols) and $d+$ Au collisions (open symbols). Some data points are displaced horizontally for clarity. Right panel: the distributions of Eqs. (6) and (7) for $4<p_{t}^{\text {trig }}<5 \mathrm{GeV} / c$ and $2 \mathrm{GeV} / c<p_{t}^{\text {assoc }}<p_{t}^{\text {trig }}$.

More…

Version 2
Erratum: Transverse momentum and centrality dependence of high-\pt\ non-photonic electron suppression in Au+Au collisions at \sqrtsNN\ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 98 (2007) 192301, 2007.
Inspire Record 721275 DOI 10.17182/hepdata.41842

The STAR collaboration at RHIC reports measurements of the inclusive yield of non-photonic electrons, which arise dominantly from semi-leptonic decays of heavy flavor mesons, over a broad range of transverse momenta ($1.2 < \pt < 10$ \gevc) in \pp, \dAu, and \AuAu collisions at \sqrtsNN = 200 GeV. The non-photonic electron yield exhibits unexpectedly large suppression in central \AuAu collisions at high \pt, suggesting substantial heavy quark energy loss at RHIC. The centrality and \pt dependences of the suppression provide constraints on theoretical models of suppression.

14 data tables

Non photonic electron yield in P+P collisions versus PT To obtain a differential cross-section in mb/(GeV2), multiply listed data by 30 Note that, in addition to the statistical and systematical errors, there is a normalization error on the value, given in the second column.

Non photonic electron yield in P+P collisions versus $p_{T}$. To obtain a differential cross-section in mb/(GeV$^2$), multiply listed data by 30.

Non photonic electron yield in minimum bias D+AU collisions versus PT To obtain a differential cross-section in mb/(GeV2), multiply listed data by 30 Note that, in addition to the statistical and systematical errors, there is a normalization error on the value, given in the second column.

More…

System size dependence of associated yields in hadron-triggered jets

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 683 (2010) 123-128, 2010.
Inspire Record 817691 DOI 10.17182/hepdata.102091

We present results on the system size dependence of high transverse momentum di-hadron correlations at $\sqrt{s_{NN}}$ = 200 GeV as measured by STAR at RHIC. Measurements in d+Au, Cu+Cu and Au+Au collisions reveal similar jet-like correlation yields at small angular separation ($\Delta\phi\sim0$, $\Delta\eta\sim0$) for all systems and centralities. Previous measurements have shown that the away-side yield is suppressed in heavy-ion collisions. We present measurements of the away-side suppression as a function of transverse momentum and centrality in Cu+Cu and Au+Au collisions. The suppression is found to be similar in Cu+Cu and Au+Au collisions at a similar number of participants. The results are compared to theoretical calculations based on the parton quenching model and the modified fragmentation model. The observed differences between data and theory indicate that the correlated yields presented here will provide important constraints on medium density profile and energy loss model parameters.

31 data tables

Di-hadron correlations in $\Delta\phi$ for small $|\Delta\eta|$ ($|\Delta\eta|<0.7$) and large ($0.7<|\Delta\eta|<1.7$), scaled to match small $|\Delta\eta|$ at large $\Delta\phi$.

Subtracted distributions for di-hadron correlations in $\Delta\phi$ for small $|\Delta\eta|$ ($|\Delta\eta|<0.7$) minus large ($0.7<|\Delta\eta|<1.7$), scaled to match small $|\Delta\eta|$ at large $\Delta\phi$.

Subtracted distributions for di-hadron correlations in $\Delta\eta$.

More…

Growth of Long Range Forward-Backward Multiplicity Correlations with Centrality in Au+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 103 (2009) 172301, 2009.
Inspire Record 819318 DOI 10.17182/hepdata.102090

Forward-backward multiplicity correlation strengths have been measured for the first time with the STAR detector for Au+Au and $\textit{p+p}$ collisions at $\sqrt{s_{NN}}$ = 200 GeV. Strong short and long range correlations are seen in central (0-10%) Au+Au collisions. The magnitude of these correlations decrease with decreasing centrality until only short range correlations are observed in 40-50% Au+Au collisions. The results are in agreement with predictions from the Dual Parton and Color Glass Condensate models.

2 data tables

FB Correlation strength for Au+Au at different centralities and p+p reactions as a function of $\Delta\eta$.

Backward-forward dispersion, $D_{bf}^{2}$ and forward-forward dispersion $D_{bf}^{2}$ for Au+Au 0-10% centrality and p+p reactions as a function of $\Delta\eta$.


Three-particle coincidence of the long range pseudorapidity correlation in high energy nucleus-nucleus collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 105 (2010) 022301, 2010.
Inspire Record 840812 DOI 10.17182/hepdata.102404

We report the first three-particle coincidence measurement in pseudorapidity ($\Delta\eta$) between a high transverse momentum ($p_{\perp}$) trigger particle and two lower $p_{\perp}$ associated particles within azimuth $\mid$$\Delta\phi$$\mid$$&lt;$0.7 in $\sqrt{{\it s}_{NN}}$ = 200 GeV $d$+Au and Au+Au collisions. Charge ordering properties are exploited to separate the jet-like component and the ridge (long-range $\Delta\eta$ correlation). The results indicate that the particles from the ridge are uncorrelated in $\Delta\eta$ not only with the trigger particle but also between themselves event-by-event. In addition, the production of the ridge appears to be uncorrelated to the presence of the narrow jet-like component.

15 data tables

Correlated hadron distribution in ∆φ(|η|<1 with a high-p⊥trigger particle in 0-12% Au+Au collisions for 3<p(t)⊥<10 GeV/cand 1<p(a)⊥<3GeV/c. The ZYA1-normalized flow background is shown by the curve.

Correlated hadron distribution ∆η(|∆φ|<0.7) with a high-p⊥ trigger particle in 0-12% Au+Au collisions for 3<p(t)⊥<10 GeV/c and 1<p(a)⊥<3GeV/c. The ∆η distributions are background subtracted and corrected for ∆η acceptance and are for like and unlike-sign pairs separately. The curves in are Gaussian fits. Errors are statistical.

Background-subtracted charge-independent (AAT ) correlated hadron pair density in minimum bias d+Au collisions for 3<p(t)⊥<10 GeV/cand 1<p(a)⊥<3 GeV/c. The results are for near-side correlated hadrons within |∆φ1,2|<0.7, and corrected for the 3-particle ∆η-∆η acceptance. Statistical errors at (∆η1,∆η2)∼(0,0)are approximately 0.033 for d+Au respectively.

More…

Search for strongly interacting massive particles generating trackless jets in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Bergauer, Thomas ; et al.
Eur.Phys.J.C 82 (2022) 213, 2022.
Inspire Record 1864485 DOI 10.17182/hepdata.101628

A search for dark matter in the form of strongly interacting massive particles (SIMPs) using the CMS detector at the LHC is presented. The SIMPs would be produced in pairs that manifest themselves as pairs of jets without tracks. The energy fraction of jets carried by charged particles is used as a key discriminator to suppress efficiently the large multijet background, and the remaining background is estimated directly from data. The search is performed using proton-proton collision data corresponding to an integrated luminosity of 16.1 fb$^{-1}$, collected with the CMS detector in 2016. No significant excess of events is observed above the expected background. For the simplified dark matter model under consideration, SIMPs with masses up to 100 GeV are excluded and further sensitivity is explored towards higher masses.

5 data tables

Distribution of the number of jets with pT > 30 GeV and |eta| < 5. The simulated QCD multijet background is compared with the signal expected for three different SIMP masses, with their cross sections scaled as indicated in the legend. The baseline selection is applied, except the events with three or more jets with pT > 30 GeV and |eta| < 5 are included.

Distribution of the value of ChF of the two leading jets. The simulated QCD multijet background is compared with the signal expected for three different SIMP masses, with their cross sections scaled as indicated in the legend. The baseline selection is applied.

The number of background events obtained from the 1- and 2-leg predictions using reconstructed objects in simulation, compared to the direct prediction from MC simulation, shown for various upper ChF thresholds. The bottom panel shows the ratios of the MC prediction to the 1-leg and the 2-leg background predictions.

More…

Delta(phi) Delta(eta) correlations in central Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 75 (2007) 034901, 2007.
Inspire Record 721060 DOI 10.17182/hepdata.102086

We report charged-particle pair correlation analyses in the space of Delta -phi (azimuth) and Delta -eta (pseudo-rapidity), for central Au + Au collisions at sqrt{s_{NN}} = 200 GeV in the STAR detector. The analysis involves unlike-sign charge pairs and like-sign charge pairs, which are transformed into charge-dependent (CD) signals and charge-independent (CI) signals. We present detailed parameterizations of the data. A model featuring dense gluonic hot spots as first proposed by van Hove predicts that the observables under investigation would have sensitivity to such a substructure should it occur, and the model also motivates selection of transverse momenta in the range 0.8 < p_t < 2.0$ GeV/c. Both CD and CI correlations of high statistical significance are observed and possible interpretations are discussed.

16 data tables

FIG. 1: a) left side: The $\Delta\phi$ - $\Delta\eta$ correlation data for unlike-sign charge particle pairs from the Star central trigger dataset shown in a 2-dimensional (2-D) perspective plot. The particle tracks have 0.8 GeV/c < $p_t$ < 2.0 GeV/c and |$\eta$| < 1.0. The structure that looks like tiles on a roof is due to the readout boundary effects of the 12 sector TPC. b) right side: The similar correlation data for like-sign charge particle pairs is shown.

FIG. 1: a) left side: The $\Delta\phi$ - $\Delta\eta$ correlation data for unlike-sign charge particle pairs from the Star central trigger dataset shown in a 2-dimensional (2-D) perspective plot. The particle tracks have 0.8 GeV/c < $p_t$ < 2.0 GeV/c and |$\eta$| < 1.0. The structure that looks like tiles on a roof is due to the readout boundary effects of the 12 sector TPC. b) right side: The similar correlation data for like-sign charge particle pairs is shown.

FIG. 2: a) left side: The correlation data for the ratio of the histograms of same-event-pairs to mixed-event-pairs for unlike-sign charged pairs, shown in a two-dimensional (2-D) perspective plot $\Delta\phi$ - $\Delta\eta$. The plot was normalized to a mean of 1. b) right side: The similar correlation data for like-sign charge pairs.

More…

Systematic Measurements of Identified Particle Spectra in pp, d+Au and Au+Au Collisions from STAR

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 79 (2009) 034909, 2009.
Inspire Record 793126 DOI 10.17182/hepdata.104931

Identified charged particle spectra of $\pi^{\pm}$, $K^{\pm}$, $p$ and $\pbar$ at mid-rapidity ($|y|<0.1$) measured by the $\dedx$ method in the STAR-TPC are reported for $pp$ and d+Au collisions at $\snn = 200$ GeV and for Au+Au collisions at 62.4 GeV, 130 GeV, and 200 GeV. ... [Shortened for arXiv list. Full abstract in manuscript.]

68 data tables

Uncorrected charged particle multiplicity distribution measured in the TPC in $|\eta| < 0.5$ for Au+Au collisions at 62.4 GeV and 200 GeV. The shaded regions indicate the centrality bins used in the analysis. The 200 GeV data are scaled by a factor 5 for clarity.

Uncorrected charged particle multiplicity distribution measured in the TPC in $|\eta| < 0.5$ for Au+Au collisions at 62.4 GeV and 200 GeV. The shaded regions indicate the centrality bins used in the analysis. The 200 GeV data are scaled by a factor 5 for clarity.

Uncorrected charged particle multiplicity distribution measured in the E-FTPC (Au-direction) within $−3.8 < |\eta| < −2.8$ in d+Au collisions at 200 GeV. The shaded regions indicate the centrality bins used in the analysis.

More…

Longitudinal double-spin asymmetry and cross section for inclusive jet production in polarized proton collisions at s**(1/2) = 200-GeV.

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 97 (2006) 252001, 2006.
Inspire Record 723509 DOI 10.17182/hepdata.104928

We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at sqrt(s)=200 GeV. The cross section data cover transverse momenta 5 < pT < 50 GeV/c and agree with next-to-leading order perturbative QCD evaluations. The A_LL data cover 5 < pT < 17 GeV/c and disfavor at 98% C.L. maximal positive gluon polarization in the polarized nucleon.

3 data tables

(a) Inclusive differential cross section for p+p -> jet +X at sqrt(s) = 200 GeV versus jet pT for a jet cone radius of 0.4. The symbols show MB (open squares) and HT (filled circles) data from the years 2003 and 2004 combined. The horizontal bars indicate the ranges of the pT intervals. The curve shows a NLO calculation. (b) Comparison of theory and data. The band indicates the experimental systematic uncertainty. The upper (lower) dashed line indicates the relative change of the NLO calculation when it is evaluated at &mu = pT/2 (&mu = 2pT).

(a) Inclusive differential cross section for p+p -> jet +X at sqrt(s) = 200 GeV versus jet pT for a jet cone radius of 0.4. The symbols show MB (open squares) and HT (filled circles) data from the years 2003 and 2004 combined. The horizontal bars indicate the ranges of the pT intervals. The curve shows a NLO calculation. (b) Comparison of theory and data. The band indicates the experimental systematic uncertainty. The upper (lower) dashed line indicates the relative change of the NLO calculation when it is evaluated at &mu = pT/2 (&mu = 2pT).

The longitudinal double-spin asymmetry ALL in p+p-> jet +X at sqrt(s) = 200 GeV versus jet pT. The uncertainties on the data points are statistical. The gray band indicates the systematic uncertainty from the beam polarization measurement, and the hatched band the total systematic uncertainty. The curves show predictions based on deep-inelastic scattering parametrizations of gluon polarization.


Mass, quark-number, and sqrt s(NN) dependence of the second and fourth flow harmonics in ultra-relativistic nucleus-nucleus collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 75 (2007) 054906, 2007.
Inspire Record 741917 DOI 10.17182/hepdata.104927

We present STAR measurements of the azimuthal anisotropy parameter $v_2$ for pions, kaons, protons, $\Lambda$, $\bar{\Lambda}$, $\Xi+\bar{\Xi}$, and $\Omega + \bar{\Omega}$, along with $v_4$ for pions, kaons, protons, and $\Lambda + \bar{\Lambda}$ at mid-rapidity for Au+Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 200 GeV. The $v_2(p_T)$ values for all hadron species at 62.4 GeV are similar to those observed in 130 and 200 GeV collisions. For observed kinematic ranges, $v_2$ values at 62.4, 130, and 200 GeV are as little as 10%--15% larger than those in Pb+Pb collisions at $\sqrt{s_{_{NN}}}=17.3$ GeV. At intermediate transverse momentum ($p_T$ from 1.5--5 GeV/c), the 62.4 GeV $v_2(p_T)$ and $v_4(p_T)$ values are consistent with the quark-number scaling first observed at 200 GeV. A four-particle cumulant analysis is used to assess the non-flow contributions to pions and protons and some indications are found for a smaller non-flow contribution to protons than pions. Baryon $v_2$ is larger than anti-baryon $v_2$ at 62.4 and 200 GeV perhaps indicating either that the initial spatial net-baryon distribution is anisotropic, that the mechanism leading to transport of baryon number from beam- to mid-rapidity enhances $v_2$, or that anti-baryon and baryon annihilation is larger in the in-plane direction.

106 data tables

Minimum-bias (0–80% of the collision cross section) v2(pT ) for identified hadrons at |η| < 1 from Au+Au collisions at √sNN = 62.4 GeV. To facilitate comparisons between panels, v2 values for inclusive charged hadrons are displayed in each panel. The error bars on the data points represent statistical uncertainties. Systematic uncertainties for the identified particles are shown as shaded bands around v2 = 0.

Minimum-bias (0–80% of the collision cross section) v2(pT ) for identified hadrons at |η| < 1 from Au+Au collisions at √sNN = 62.4 GeV. To facilitate comparisons between panels, v2 values for inclusive charged hadrons are displayed in each panel. The error bars on the data points represent statistical uncertainties. Systematic uncertainties for the identified particles are shown as shaded bands around v2 = 0.

Minimum-bias (0–80% of the collision cross section) v2(pT ) for identified hadrons at |η| < 1 from Au+Au collisions at √sNN = 62.4 GeV. To facilitate comparisons between panels, v2 values for inclusive charged hadrons are displayed in each panel. The error bars on the data points represent statistical uncertainties. Systematic uncertainties for the identified particles are shown as shaded bands around v2 = 0.

More…

Indications of Conical Emission of Charged Hadrons at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 102 (2009) 052302, 2009.
Inspire Record 785050 DOI 10.17182/hepdata.102085

Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d+Au, and Au+Au collisions at 200 GeV by the STAR experiment. The acoplanarities in pp and d+Au indicate initial state kT broadening. Larger acoplanarity is observed in Au+Au collisions. The central Au+Au data show an additional effect signaling conical emission of correlated charged hadrons.

14 data tables

FIG. 1: (a) Raw two-particle correlation signal $Y_2$ (red), background $aB_{inc}F_2$ (solid histogram), and background systematic uncertainty from a (dashed histograms). (b) Background-subtracted two-particle correlation $\hat{Y}_2$ (red), and systematic uncertainties due to a (dashed histograms) and flow (blue histograms). (c) Raw three-particle correlation $Y_3$. (d) $ba^2Y_{inc}^2$ . (e) Sum of trig-corr-bkgd and trigger flow. Data are from 12% central Au+Au collisions. Statistical errors in (a,b) are smaller than the point size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

FIG. 1: (a) Raw two-particle correlation signal $Y_2$ (red), background $aB_{inc}F_2$ (solid histogram), and background systematic uncertainty from a (dashed histograms). (b) Background-subtracted two-particle correlation $\hat{Y}_2$ (red), and systematic uncertainties due to a (dashed histograms) and flow (blue histograms). (c) Raw three-particle correlation $Y_3$. (d) $ba^2Y_{inc}^2$ . (e) Sum of trig-corr-bkgd and trigger flow. Data are from 12% central Au+Au collisions. Statistical errors in (a,b) are smaller than the point size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

FIG. 1: (a) Raw two-particle correlation signal $Y_2$ (red), background $aB_{inc}F_2$ (solid histogram), and background systematic uncertainty from a (dashed histograms). (b) Background-subtracted two-particle correlation $\hat{Y}_2$ (red), and systematic uncertainties due to a (dashed histograms) and flow (blue histograms). (c) Raw three-particle correlation $Y_3$. (d) $ba^2Y_{inc}^2$ . (e) Sum of trig-corr-bkgd and trigger flow. Data are from 12% central Au+Au collisions. Statistical errors in (a,b) are smaller than the point size.

More…

The Multiplicity dependence of inclusive p(t) spectra from p-p collisions at s**(1/2) = 200-GeV

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.D 74 (2006) 032006, 2006.
Inspire Record 719969 DOI 10.17182/hepdata.102084

We report measurements of transverse momentum $p_t$ spectra for ten event multiplicity classes of p-p collisions at $\sqrt{s} = 200$ GeV. By analyzing the multiplicity dependence we find that the spectrum shape can be decomposed into a part with amplitude proportional to multiplicity and described by a L\'evy distribution on transverse mass $m_t$, and a part with amplitude proportional to multiplicity squared and described by a gaussian distribution on transverse rapidity $y_t$. The functional forms of the two parts are nearly independent of event multiplicity. The two parts can be identified with the soft and hard components of a two-component model of p-p collisions. This analysis then provides the first isolation of the hard component of the $p_t$ spectrum as a distribution of simple form on $y_t$.

5 data tables

FIG. 1: Corrected and normalized charged-particle spectra on transverse momentum $p_t$ (left) and transverse rapidity $y_t$ (right) for 10 event multiplicity classes, displaced upward by successive factors 40 relative to $\hat{n}_{ch}$ = 1 at bottom. Solid curves represent reference function $n_s/n_{ch} · S_0(y_t)$ (cf.Sec. IV C). Dotted curves are spline fits to guide the eye.

FIG. 1: Corrected and normalized charged-particle spectra on transverse momentum $p_t$ (left) and transverse rapidity $y_t$ (right) for 10 event multiplicity classes, displaced upward by successive factors 40 relative to $\hat{n}_{ch}$ = 1 at bottom. Solid curves represent reference function $n_s/n_{ch} · S_0(y_t)$ (cf.Sec. IV C). Dotted curves are spline fits to guide the eye.

FIG. 2. Left: Relative residuals from power-law fits to $p_{t}$ spectra in Fig. 1. The hatched band represents the expected statistical errors for STAR data. Right: Exponents $n$ from power-law fits to data (solid points) and to corresponding twocomponent fixed-model functions (open circles, see Sec. VI) compared to the two-component fixed-model Lévy exponent $12.8 \pm 0.15$ (hatched band). NOTE 1: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty. NOTE 2: The "data_stat" uncertainty corresponds to the expected statistical error (hatched band).

More…

Search for singly and pair-produced leptoquarks coupling to third-generation fermions in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 819 (2021) 136446, 2021.
Inspire Record 1835316 DOI 10.17182/hepdata.104980

A search for leptoquarks produced singly and in pairs in proton-proton collisions is presented. We consider the leptoquark (LQ) to be a scalar particle of charge -1/3$e$ coupling to a top quark plus a tau lepton ($\mathrm{t}\tau$) or a bottom quark plus a neutrino ($\mathrm{b}\nu$), or a vector particle of charge +2/3$e$, coupling to $\mathrm{t}\nu$ or $\mathrm{b}\tau$. These choices are motivated by models that can explain a series of anomalies observed in the measurement of B meson decays. In this analysis the signatures $\mathrm{t}\tau\nu\mathrm{b}$ and $\mathrm{t}\tau\nu$ are probed, using data recorded by the CMS experiment at the CERN LHC at $\sqrt{s} =$ 13 TeV and that correspond to an integrated luminosity of 137 fb$^{-1}$. These signatures have not been previously explored in a dedicated search. The data are found to be in agreement with the standard model prediction. Lower limits at 95% confidence level are set on the LQ mass in the range 0.98-1.73 TeV, depending on the LQ spin and its coupling $\lambda$ to a lepton and a quark, and assuming equal branching fractions for the two LQ decay modes considered. These are the most stringent constraints to date on the existence of leptoquarks in this scenario.

4 data tables

Pair leptoquark (LQ) total selection efficiency, accounting for both the decay branching fraction and the event selection, for events that pass the signal region requirements and any of the top quark or b jet categories defined in the search.

Single scalar leptoquark (LQs) total selection efficiency, accounting for both the decay branching fraction and the event selection, for events that pass the signal region requirements and any of the top quark or b jet categories defined in the search.

Single vector leptoquark (LQv) k = 0 total selection efficiency, accounting for both the decay branching fraction and the event selection, for events that pass the signal region requirements and any of the top quark or b jet categories defined in the search.

More…

Strangelet search at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 76 (2007) 011901, 2007.
Inspire Record 698939 DOI 10.17182/hepdata.104503

We have searched for strangelets in a triggered sample of 61 million central (top 4%) Au+Au collisions at $\sNN = 200 $GeV near beam rapidities at the STAR detector. We have sensitivity to metastable strangelets with lifetimes of order $\geq 0.1 ns$, in contrast to limits over ten times longer in AGS studies and longer still at the SPS. Upper limits of a few 10^{-6} to 10^{-7} per central Au+Au collision are set for strangelets with mass ${}^{>}_{\sim}30$ GeV/c^{2}.

2 data tables

Upper limit for neutral (Z=0) and charged (Z=5) strangelet as a function of mass.

Upper limit for charged (Z=1) strangelet as a function of lifetime.


Version 2
Longitudinal Spin Transfer to $\Lambda$ and $\bar{\Lambda}$ Hyperons in Polarized Proton-Proton Collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.D 80 (2009) 111102, 2009.
Inspire Record 833423 DOI 10.17182/hepdata.99048

The longitudinal spin transfer, $D_{LL}$, from high energy polarized protons to $\Lambda$ and $\bar{\Lambda}$ hyperons has been measured for the first time in proton-proton collisions at $\sqrt{s} = 200 \mathrm{GeV}$ with the STAR detector at RHIC. The measurements cover pseudorapidity, $\eta$, in the range $|\eta| < 1.2$ and transverse momenta, $p_\mathrm{T}$, up to $4 \mathrm{GeV}/c$. The longitudinal spin transfer is found to be $D_{LL}= -0.03\pm 0.13(\mathrm{stat}) \pm 0.04(\mathrm{syst})$ for inclusive $\Lambda$ and $D_{LL} = -0.12 \pm 0.08(\mathrm{stat}) \pm 0.03(\mathrm{syst})$ for inclusive $\bar{\Lambda}$ hyperons with $<\eta> = 0.5$ and $<p_\mathrm{T}> = 3.7 \mathrm{GeV}/c$. The dependence on $\eta$ and $p_\mathrm{T}$ is presented.

9 data tables

The spin transfer $D_{LL}$ to (a) $\Lambda$ and (b) $\bar{\Lambda}$ hyperons produced at positive pseudorapidity with respect to the polarized proton beam from $MB$, $JP$, and $HT$ data versus hyperon transverse momenta $p_{T}$. The sizes of the statistical and systematic uncertainties are indicated by the vertical bars and bands, respectively. For clarity, the HT data points have been shifted slightly in $p_{T}$. The dotted vertical lines indicate the $p_{T}$ intervals in the analysis of HT and JP data.

The spin transfer $D_{LL}$ to (a) $\Lambda$ and (b) $\bar{\Lambda}$ hyperons produced at positive pseudorapidity with respect to the polarized proton beam from $MB$, $JP$, and $HT$ data versus hyperon transverse momenta $p_{T}$. The sizes of the statistical and systematic uncertainties are indicated by the vertical bars and bands, respectively. For clarity, the HT data points have been shifted slightly in $p_{T}$. The dotted vertical lines indicate the $p_{T}$ intervals in the analysis of HT and JP data.

The spin transfer $D_{LL}$ to (a) $\Lambda$ and (b) $\bar{\Lambda}$ hyperons produced at positive pseudorapidity with respect to the polarized proton beam from $MB$, $JP$, and $HT$ data versus hyperon transverse momenta $p_{T}$. The sizes of the statistical and systematic uncertainties are indicated by the vertical bars and bands, respectively. For clarity, the HT data points have been shifted slightly in $p_{T}$. The dotted vertical lines indicate the $p_{T}$ intervals in the analysis of HT and JP data.

More…

Pseudorapidity asymmetry and centrality dependence of charged hadron spectra in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 70 (2004) 064907, 2004.
Inspire Record 656934 DOI 10.17182/hepdata.102944

The pseudorapidity asymmetry and centrality dependence of charged hadron spectra in d+Au collisions at $\sqrt{s_{NN}}=200$ GeV are presented. The charged particle density at mid-rapidity, its pseudorapidity asymmetry and centrality dependence are reasonably reproduced by a Multi-Phase Transport model, by HIJING, and by the latest calculations in a saturation model. Ratios of transverse momentum spectra between backward and forward pseudorapidity are above unity for \pT below 5 GeV/$c$. The ratio of central to peripheral spectra in d+Au collisions shows enhancement at 2 $<$ \pT $<$ 6 GeV/$c$, with a larger effect at backward rapidity than forward rapidity. Our measurements are in qualitative agreement with gluon saturation and in contrast to calculations based on incoherent multiple partonic scatterings.

5 data tables

The p$_T$ spectra of charged hadrons for various centrality classes.

The pseudorapidity dependence of charged particle densities for various centrality classes.

The ratio of charged hadron spectra in the backward rapidity to forward rapidity region for minimum bias and ZDC-d neutron-tagged events.

More…

Multi-strange baryon elliptic flow in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 95 (2005) 122301, 2005.
Inspire Record 681161 DOI 10.17182/hepdata.102945

We report on the first measurement of elliptic flow $v_2(p_T)$ of multi-strange baryons $\Xi+\bar{Xi}$ and $\Omega+\bar{Omega} in heavy-ion collisions. In minimum bias Au+Au collisions at sqrt(s_NN) = 200 GeV, a significant amount of elliptic flow, comparable to other non-strange baryons, is observed for multi-strange baryons which are expected to be particularly sensitive to the dynamics of the partonic stage of heavy-ion collisions. The $p_T$ dependence of $v_2$ of the multi-strange baryons confirms the number of constituent quark scaling previously observed for lighter hadrons. These results support the idea that a substantial fraction of the observed collective motion is developed at the early partonic stage in ultra-relativistic nuclear collisions at RHIC.

5 data tables

$\Xi^{-} + \Xi^{+}$ invariant mass distribution from minimum bias (0–80%) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

$\Omega^{-} + \Omega^{+}$ invariant mass distribution from minimum bias (0–80%) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Azimuthal distributions with respect to the event plane of the $\Xi^{-} + \Xi^{+}$ and $\Omega^{-} + \Omega^{+}$ raw yields.

More…

Directed flow in Au + Au collisions at s(NN)**(1/2) = 62-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 73 (2006) 034903, 2006.
Inspire Record 695404 DOI 10.17182/hepdata.102947

We present the directed flow ($v_1$) measured in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 62.4 GeV in the mid-pseudorapidity region $|\eta|<1.3$ and in the forward pseudorapidity region $2.5 < |\eta| < 4.0$. The results are obtained using the three-particle cumulant method, the event plane method with mixed harmonics, and for the first time at the Relativistic Heavy Ion Collider (RHIC), the standard method with the event plane reconstructed from spectator neutrons. Results from all three methods are in good agreement. Over the pseudorapidity range studied, charged particle directed flow is in the direction opposite to that of fragmentation neutrons.

19 data tables

Directed flow of charged particles as a function of pseudorapidity, for centrality 10%-70%.

Directed flow of charged particles as a function of pseudorapidity, for centrality 10%-70%.

Directed flow of charged particles as a function of pseudorapidity, for centrality 10%-70%.

More…

Version 2
Global polarization measurement in Au+Au collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 76 (2007) 024915, 2007.
Inspire Record 750410 DOI 10.17182/hepdata.98581

The system created in non-central relativistic nucleus-nucleus collisions possesses large orbital angular momentum. Due to spin-orbit coupling, particles produced in such a system could become globally polarized along the direction of the system angular momentum. We present the results of Lambda and anti-Lambda hyperon global polarization measurements in Au+Au collisions at sqrt{s_NN}=62.4 GeV and 200 GeV performed with the STAR detector at RHIC. The observed global polarization of Lambda and anti-Lambda hyperons in the STAR acceptance is consistent with zero within the precision of the measurements. The obtained upper limit, |P_{Lambda,anti-Lambda}| <= 0.02, is compared to the theoretical values discussed recently in the literature.

11 data tables

(Color online) Invariant mass distribution for the $\Lambda$ (filled circles) and $\overline{\Lambda}$ (open squares) candidates after the quality cuts for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%).

(Color online) Global polarization of $\Lambda$–hyperons as a function of $\Lambda$ transverse momentum $p^{\Lambda}_{t}$. Filled circles show the results for Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV (centrality region 20-70%) and open squares indicate the results for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%). Only statistical uncertainties are shown.

(Color online) Global polarization of $\Lambda$–hyperons as a function of $\Lambda$ pseudorapidity $\eta^{\Lambda}$. Filled circles show the results for Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV (centrality region 20-70%). A constant line fit to these data points yields $P_{\Lambda}=(2.8\pm 9.6)\times 10^{-3}$ with $\chi^{2}/ndf=6.5/10$. Open squares show the results for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%). A constant line fit gives $P_{\Lambda}=(1.9\pm 8.0)\times 10^{-3}$ with $\chi^{2}/ndf=14.3/10$. Only statistical uncertainties are shown.

More…

Minijet deformation and charge-independent angular correlations on momentum subspace (eta, phi) in Au-Au collisions at s(NN)**(1/2) = 130-GeV

The STAR collaboration Adams, John ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 73 (2006) 064907, 2006.
Inspire Record 663650 DOI 10.17182/hepdata.102089

First measurements of charge-independent correlations on angular difference variables $\eta_1 - \eta_2$ (pseudorapidity) and $\phi_1 - \phi_2$ (azimuth) are presented for primary charged hadrons with transverse momentum $0.15 \leq p_t \leq 2$ GeV/$c$ and $|\eta| \leq 1.3$ from Au-Au collisions at $\sqrt{s_{NN}} = 130$ GeV. Strong charge-independent angular correlations are observed associated with jet-like structures and elliptic flow. The width of the jet-like peak on $\eta_1 - \eta_2$ increases by a factor 2.3 from peripheral to central collisions, suggesting strong coupling of semi-hard scattered partons to a longitudinally-expanding medium. New methods of jet analysis introduced here provide evidence for nonperturbative QCD medium effects in heavy ion collisions.

4 data tables

Two-particle CI joint autocorrelations $\widehat{N}(\widehat{r}-1)$ on $(\eta_{\Delta}, \phi_{\Delta})$ for most-central collisions.

Two-particle CI joint autocorrelations $\widehat{N}(\widehat{r}-1)$ on $(\eta_{\Delta}, \phi_{\Delta})$ for mid-central collisions.

Two-particle CI joint autocorrelations $\widehat{N}(\widehat{r}-1)$ on $(\eta_{\Delta}, \phi_{\Delta})$ for mid-peripheral collisions.

More…

Hadronization geometry and charge-dependent number autocorrelations on axial momentum space in Au Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, John ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 634 (2006) 347-355, 2006.
Inspire Record 653486 DOI 10.17182/hepdata.102088

We present the first measurements of charge-dependent correlations on angular difference variables $\eta_1 - \eta_2$ (pseudorapidity) and $\phi_1 - \phi_2$ (azimuth) for primary charged hadrons with transverse momentum $0.15 \leq p_t \leq 2$ GeV/$c$ and $|\eta| \leq 1.3$ from Au-Au collisions at $\sqrt{s_{NN}} = 130$ GeV. We observe correlation structures not predicted by theory but consistent with evolution of hadron emission geometry with increasing centrality from one-dimensional fragmentation of color strings along the beam direction to an at least two-dimensional hadronization geometry along the beam and azimuth directions of a hadron-opaque bulk medium.

6 data tables

Normalized LS pair-number ratios $\widehat{r} [X(p_{t1}),X(p_{t2})]-1$ for collisions in centrality class (a) (most-central) in $(\eta_{1},\eta_{2})$.

Normalized LS pair-number ratios $\widehat{r} [X(p_{t1}),X(p_{t2})]-1$ for collisions in centrality class (a) (most-central) in $(\phi_{1},\phi_{2})$.

Two-particle CD joint autocorrelations $\widehat{N}(\widehat{r}-1)$ on $(\eta_{\Delta}, \phi_{\Delta})$ for most-central collisions.

More…

Measurement of Transverse Single-Spin Asymmetries for Di-Jet Production in Proton-Proton Collisions at $\sqrt{s} = 200$ GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 99 (2007) 142003, 2007.
Inspire Record 751885 DOI 10.17182/hepdata.102938

We report the first measurement of the opening angle distribution between pairs of jets produced in high-energy collisions of transversely polarized protons. The measurement probes (Sivers) correlations between the transverse spin orientation of a proton and the transverse momentum directions of its partons. With both beams polarized, the wide pseudorapidity ($-1 \leq \eta \leq +2$) coverage for jets permits separation of Sivers functions for the valence and sea regions. The resulting asymmetries are all consistent with zero and considerably smaller than Sivers effects observed in semi-inclusive deep inelastic scattering (SIDIS). We discuss theoretical attempts to reconcile the new results with the sizable transverse spin effects seen in SIDIS and forward hadron production in pp collisions.

4 data tables

Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.

Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.

Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.

More…

Strange baryon resonance production in s(NN)**(1/2) = 200-GeV p + p and Au + Au collisions.

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 97 (2006) 132301, 2006.
Inspire Record 715471 DOI 10.17182/hepdata.102937

We report the measurements of $\Sigma (1385)$ and $\Lambda (1520)$ production in $p+p$ and $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV from the STAR collaboration. The yields and the $p_{T}$ spectra are presented and discussed in terms of chemical and thermal freeze-out conditions and compared to model predictions. Thermal and microscopic models do not adequately describe the yields of all the resonances produced in central $Au+Au$ collisions. Our results indicate that there may be a time-span between chemical and thermal freeze-out during which elastic hadronic interactions occur.

2 data tables

The transverse mass spectra for $\Sigma^{∗}$ and $\Lambda^{∗}$ in p+p and in central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Statistical and systematical errors are included.

Resonance to stable particle ratios for p + p and Au + Au collisions. The ratios are normalized to unity in p + p and compared to thermal and UrQMD model predictions for central Au + Au [8, 12]. Statistical and systematic uncertainties are included in the error bars. (In the paper figure, K*/K dNCh/dy axis is shifted +30 for visual purposes to seperate the error bar contributions.)


Transverse-momentum p(t) correlations on (eta,Phi) from mean-p(t) fluctuations in Au - Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, John ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
J.Phys.G 32 (2006) L37-L48, 2006.
Inspire Record 693136 DOI 10.17182/hepdata.102092

We present first measurements of the pseudorapidity and azimuth $(\eta,\phi)$ bin-size dependence of event-wise mean transverse momentum $<p_{t} >$ fluctuations for Au-Au collisions at $\sqrt{s_{NN}} = 200$ GeV. We invert that dependence to obtain $p_t$ autocorrelations on differences $(\eta_\Delta,\phi_\Delta)$ interpreted to represent velocity/temperature distributions on ($\eta,\phi$). The general form of the autocorrelations suggests that the basic correlation mechanism is parton fragmentation. The autocorrelations vary strongly with collision centrality, which suggests that fragmentation is strongly modified by a dissipative medium in the more central

1 data table

Correlation amplitudes $B_{1}, B_{2}, B_{3}$ as well as positive-peak widths for pseudorapidity ($\sigma_{\eta_{1}}$) and azimuth ($\sigma_{\phi_{1}}$), plotted on mean participant path length $\nu$.


Transverse-momentum dependent modification of dynamic texture in central Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 71 (2005) 031901, 2005.
Inspire Record 653628 DOI 10.17182/hepdata.102943

Correlations in the hadron distributions produced in relativistic Au+Au collisions are studied in the discrete wavelet expansion method. The analysis is performed in the space of pseudorapidity (|eta| < 1) and azimuth (full 2 pi) in bins of transverse momentum (p_t) from 0.14 < p_t < 2.1 GeV/c. In peripheral Au+Au collisions a correlation structure ascribed to mini-jet fragmentation is observed. It evolves with collision centrality and p_t in a way not seen before which suggests strong dissipation of minijet fragmentation in the longitudinally-expanding medium.

10 data tables

Normalized dynamic texture for fineness scale m = 0

Normalized dynamic texture for fineness scale m = 1

Normalized dynamic texture for fineness scale m = 0

More…

Incident energy dependence of p(t) correlations at RHIC.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 72 (2005) 044902, 2005.
Inspire Record 681688 DOI 10.17182/hepdata.102946

We present results for two-particle transverse momentum correlations, <dpt,i dpt,j>, as a function of event centrality for Au+Au collisions at sqrt(sNN) = 20, 62, 130, and 200 GeV at the Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy and the centrality dependence may show evidence of processes such as thermalization, minijet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements at the Super Proton Synchrotron.

8 data tables

Average transverse momentum per event for Au+Au at $\sqrt{s_{NN}}$ = 20 GeV for the 5% most central collisions.

Average transverse momentum per event for Au+Au at $\sqrt{s_{NN}}$ = 62 GeV for the 5% most central collisions.

Average transverse momentum per event for Au+Au at $\sqrt{s_{NN}}$ = 130 GeV for the 5% most central collisions.

More…

The Energy dependence of p(t) angular correlations inferred from mean-p(t) fluctuation scale dependence in heavy ion collisions at the SPS and RHIC

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
J.Phys.G 34 (2007) 451-466, 2007.
Inspire Record 717232 DOI 10.17182/hepdata.102948

We present the first study of the energy dependence of $p_t$ angular correlations inferred from event-wise mean transverse momentum $<p_{t} >$ fluctuations in heavy ion collisions. We compare our large-acceptance measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure suggests that the principal source of $p_t$ correlations and fluctuations is minijets (minimum-bias parton fragments). We observe a dramatic increase in correlations and fluctuations from SPS to RHIC energies, increasing linearly with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related $<p_{t}>$ fluctuations near 10 GeV.

5 data tables

Per-particle fluctuation dependence on pseudorapidity scale $\delta\eta$ in central collisions.

Per-particle fluctuation dependence on pseudorapidity scale $\delta\eta$ in central collisions.

Centrality dependence of $<p_t>$ fluctuations in the STAR acceptance for four energies. $\nu$ is the mean participant path length (please consult text).

More…

System-size independence of directed flow at the Relativistic Heavy-Ion Collider

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 101 (2008) 252301, 2008.
Inspire Record 790350 DOI 10.17182/hepdata.102949

We measure directed flow ($v_1$) for charged particles in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}} =$ 200 GeV and 62.4 GeV, as a function of pseudorapidity ($\eta$), transverse momentum ($p_t$) and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all existing models, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to different collision systems, and investigate possible explanations for the observed sign change in $v_1(p_t)$.

11 data tables

Charged particle $v_1(\eta)$ for 0-5 % centrality in Au+Au collisions at 200 GeV.

$<P_x>/<P_t>$ of charged particles as a function of pseudorapidity, for centrality 0-5% in Au+Au collisions at 200 GeV.

Charged particle $v_1(\eta)$ for 5-40 % centrality in Au+Au collisions at 200 GeV.

More…

Transverse momentum correlations and minijet dissipation in Au Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, John ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
J.Phys.G 34 (2007) 799-816, 2007.
Inspire Record 656302 DOI 10.17182/hepdata.102087

Measurements of two-particle correlations on transverse momentum $p_t$ for Au-Au collisions at $\sqrt{s_{NN}} = 130$ GeV are presented. Significant large-momentum-scale correlations are observed for charged primary hadrons with $0.15 \leq p_t \leq 2$ GeV/$c$ and pseudorapidity $|\eta| \leq 1.3$. Such correlations were not observed in a similar study at lower energy and are not predicted by theoretical collision models. Their direct relation to mean-$p_t$ fluctuations measured in the same angular acceptance is demonstrated. Positive correlations are observed for pairs of particles which have large $p_t$ values while negative correlations occur for pairs in which one particle has large $p_t$ and the other has much lower $p_t$. The correlation amplitudes per final state particle increase with collision centrality. The observed correlations are consistent with a scenario in which the transverse momentum of hadrons associated with initial-stage semi-hard parton scattering is dissipated by the medium to lower $p_t$.

4 data tables

Symmetrized pair-density net ratios $\widehat{r} [X(p_{t1}),X(p_{t2})]-1$ for all nonidentified charged primary particles for most-central Au-Au collision events at $\sqrt{s_{NN}}=130$ GeV.

Symmetrized pair-density net ratios $\widehat{r}[X(p_{t1}),X(p_{t2})]-1$ for all nonidentified charged primary particles for mid-central Au-Au collision events at $\sqrt{s_{NN}}=130$ GeV.

Symmetrized pair-density net ratios $\widehat{r}[X(p_{t1}),X(p_{t2})]-1$ for all nonidentified charged primary particles for mid-peripheral Au-Au collision events at $\sqrt{s_{NN}}=130$ GeV.

More…

Measurements of $\mathrm{t\bar{t}}$H production and the CP structure of the Yukawa interaction between the Higgs boson and top quark in the diphoton decay channel

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 125 (2020) 061801, 2020.
Inspire Record 1787821 DOI 10.17182/hepdata.94286

The first observation of the $\mathrm{t\bar{t}}$H process in a single Higgs boson decay channel with the full reconstruction of the final state (H$\to\gamma\gamma$) is presented, with a significance of 6.6 standard deviations ($\sigma$). The CP structure of Higgs boson couplings to fermions is measured, resulting in an exclusion of the pure CP-odd structure of the top Yukawa coupling at 3.2$\sigma$. The measurements are based on a sample of proton-proton collisions at a center-of-mass energy $\sqrt{s} =$ 13 TeV collected by the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The cross section times branching fraction of the $\mathrm{t\bar{t}}$H process is measured to be $\sigma_{\mathrm{t\bar{t}H}}\mathcal{B}_{\gamma\gamma} =$ 1.56 $^{+0.34}_{-0.32}$ fb, which is compatible with the standard model prediction of 1.13 $^{+0.08}_{-0.11}$ fb. The fractional contribution of the CP-odd component is measured to be $f^{\mathrm{Htt}}_\mathrm{CP} =$ 0.00 $\pm$ 0.33.

5 data tables

measured cross section times branch ratio

measured cross section times branch divided by SM prediction

Observed significance

More…

Center of mass energy and system-size dependence of photon production at forward rapidity at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Nucl.Phys.A 832 (2010) 134-147, 2010.
Inspire Record 822997 DOI 10.17182/hepdata.101347

We present the multiplicity and pseudorapidity distributions of photons produced in Au+Au and Cu+Cu collisions at \sqrt{s_NN} = 62.4 and 200 GeV. The photons are measured in the region -3.7 < \eta < -2.3 using the photon multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of the collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for Au+Au and Cu+Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for \sqrt{s_NN} = 62.4 GeV and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of \eta - ybeam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies.

14 data tables

Fig. 1. (Color online.) Top panel: Photon reconstruction efficiency $\left(\epsilon_{\gamma}\right)$ (solid symbols) and purity of photon sample $\left(f_{\mathrm{p}}\right)$ (open symbols) for PMD as a function of pseudorapidity $(\eta)$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=$ $200 \mathrm{GeV}$. Bottom panel: Comparison between estimated $\epsilon_{\gamma}$ and $f_{\mathrm{p}}$ for PMD as a function of $\eta$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4 \mathrm{GeV}$ using HIJING and AMPT models. The error bars on the AMPT data are statistical and those for HIJING are within the symbol size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

Fig. 1. (Color online.) Top panel: Photon reconstruction efficiency $\left(\epsilon_{\gamma}\right)$ (solid symbols) and purity of photon sample $\left(f_{\mathrm{p}}\right)$ (open symbols) for PMD as a function of pseudorapidity $(\eta)$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=$ $200 \mathrm{GeV}$. Bottom panel: Comparison between estimated $\epsilon_{\gamma}$ and $f_{\mathrm{p}}$ for PMD as a function of $\eta$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4 \mathrm{GeV}$ using HIJING and AMPT models. The error bars on the AMPT data are statistical and those for HIJING are within the symbol size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

Fig. 2. (Color online.) Event-by-event photon multiplicity distributions (solid circles) for $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=62.4$ and $200 \mathrm{GeV} .$ The distributions for top $0-5 \%$ central $\mathrm{Au}+$ Au collisions and top $0-10 \%$ central $\mathrm{Cu}+\mathrm{Cu}$ collisions are also shown (open circles). The photon multiplicity distributions for central collisions are observed to be Gaussian (solid line). Only statistical errors are shown. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

More…

Multi-strange baryon production in Au Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 182301, 2004.
Inspire Record 624566 DOI 10.17182/hepdata.102321

The transverse mass spectra and mid-rapidity yields for $\Xi$s and $\Omega$s plus their anti-particles are presented. The 10% most central collision yields suggest that the amount of multi-strange particles produced per produced charged hadron increases from SPS to RHIC energies. A hydrodynamically inspired model fit to the spectra, which assumes a thermalized source, seems to indicate that these multi-strange particles experience a significant transverse flow effect, but are emitted when the system is hotter and the flow is smaller than values obtained from a combined fit to $\pi$, K, p and $\Lambda$s.

19 data tables

$m_T$ spectra of $\Xi^-$ and $\bar{\Xi}^+$ for 0-10% centrality. Errors listed here are the quadrature sum of statistical and point-to-point systematic uncertainties. There is an additional overall $m_T$-independent systematic uncertainty of 10%.

$m_T$ spectra of $\Xi^-$ and $\bar{\Xi}^+$ for 10-25% centrality. Errors listed here are the quadrature sum of statistical and point-to-point systematic uncertainties. There is an additional overall $m_T$-independent systematic uncertainty of 10%.

$m_T$ spectra of $\Xi^-$ and $\bar{\Xi}^+$ for 25-75% centrality. Errors listed here are the quadrature sum of statistical and point-to-point systematic uncertainties. There is an additional overall $m_T$-independent systematic uncertainty of 10%.

More…

Spin alignment measurements of the $K^{*0}(892)$ and $\phi(1020)$ vector mesons in heavy ion collisions at $\sqrt{s}_{NN} = 200$ GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 77 (2008) 061902, 2008.
Inspire Record 777248 DOI 10.17182/hepdata.101350

We present the first spin alignment measurements for the $K^{*0}(892)$ and $\phi(1020)$ vector mesons produced at mid-rapidity with transverse momenta up to 5 GeV/c at $\sqrt{s_{NN}}$ = 200 GeV at RHIC. The diagonal spin density matrix elements with respect to the reaction plane in Au+Au collisions are $\rho_{00}$ = 0.32 $\pm$ 0.04 (stat) $\pm$ 0.09 (syst) for the $K^{*0}$ ($0.8<p_T<5.0$ GeV/c) and $\rho_{00}$ = 0.34 $\pm$ 0.02 (stat) $\pm$ 0.03 (syst) for the $\phi$ ($0.4<p_T<5.0$ GeV/c), and are constant with transverse momentum and collision centrality. The data are consistent with the unpolarized expectation of 1/3 and thus no evidence is found for the transfer of the orbital angular momentum of the colliding system to the vector meson spins. Spin alignments for $K^{*0}$ and $\phi$ in Au+Au collisions were also measured with respect to the particle's production plane. The $\phi$ result, $\rho_{00}$ = 0.41 $\pm$ 0.02 (stat) $\pm$ 0.04 (syst), is consistent with that in p+p collisions, $\rho_{00}$ = 0.39 $\pm$ 0.03 (stat) $\pm$ 0.06 (syst), also measured in this work. The measurements thus constrain the possible size of polarization phenomena in the production dynamics of vector mesons.

3 data tables

The spin-density matrix elements $\rho_{00}$ with respect to the reaction plane in midcentral $Au+Au$ collisions at $\sqrt{s_{NN}}=200$ GeV versus $p_{T}$ of the vector meson. The sizes of the statistical uncertainties are indicated by error bars, and the systematic uncertainties by caps. The $K^{∗0}$ data points have been shifted slightly in $p_{T}$ for clarity. The dashed horizontal line indicates the unpolarized expectation $\rho_{00}=1/3$. The bands and continuous horizontal lines show predictions discussed in the text.

The dependence of $\rho_{00}$ with respect to the reaction plane on the number of participants at midrapidity in $Au+Au$ collisions at $\sqrt{s_{NN}}=200$ GeV. The sizes of the statistical uncertainties are indicated by error bars and the systematic uncertainties by caps. The $\phi$ data for $p_{T} > 2$ GeV/$c$ and the $K^{∗0}$ data points have been shifted slightly in $\langle N_{\scriptsize{\mbox{part}}}\rangle$ for clarity. The dashed horizontal line indicates the unpolarized expectation $\rho_{00}=1/3$.

The spin-density matrix elements $\rho_{00}$ with respect to the production plane in midcentral $Au+Au$ and $p+p$ collisions at $\sqrt{s_{NN}}=200$ GeV versus $p_{T}$ of the vector meson. The sizes of the statistical uncertainties are indicated by error bars and the systematic uncertainties by caps. The $K^{*0}$ and the $\phi$ $p+p$ data points have been shifted slightly in $p_{T}$ for clarity. The dashed horizontal line indicates the unpolarized expectation $\rho_{00}=1/3$.


Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 673 (2009) 183-191, 2009.
Inspire Record 800796 DOI 10.17182/hepdata.101351

We study the beam-energy and system-size dependence of \phi meson production (using the hadronic decay mode \phi -- K+K-) by comparing the new results from Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from mid-rapidity (|y|&lt;0.5) for 0.4 &lt; pT &lt; 5 GeV/c. At a given beam energy, the transverse momentum distributions for \phi mesons are observed to be similar in yield and shape for Cu+Cu and Au+Au colliding systems with similar average numbers of participating nucleons. The \phi meson yields in nucleus-nucleus collisions, normalised by the average number of participating nucleons, are found to be enhanced relative to those from p+p collisions with a different trend compared to strange baryons. The enhancement for \phi mesons is observed to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.

8 data tables

Midrapidity $(|y| < 0.5)$ transverse momentum spectra of $\phi$ mesons for various collision centrality classes for $Cu+Cu$ collisions at $\sqrt{s_{NN}}=62.4$ and 200 GeV. To study the system size dependence, comparison of $40-50\%$ $Au+Au$ spectra to $10-20\%$ $Cu+Cu$ spectra at 200 GeV, and $40-60\%$ $Au+Au$ spectra to $20-30\%$ $Cu+Cu$ spectra at 62.4 GeV are shown. These centralities for the two colliding systems have similar $\langle N_{\scriptsize{\mbox{part}}}\rangle$ values as outlined in Table 2. The errors represent the statistical and systematic errors added in quadrature. They are found to be within the symbol size. The spectra are fitted to a Levy function discussed in the text.

Midrapidity $(|y| < 0.5)$ transverse momentum spectra of $\phi$ mesons for various collision centrality classes for $Cu+Cu$ collisions at $\sqrt{s_{NN}}=62.4$ and 200 GeV. To study the system size dependence, comparison of $40-50\%$ $Au+Au$ spectra to $10-20\%$ $Cu+Cu$ spectra at 200 GeV, and $40-60\%$ $Au+Au$ spectra to $20-30\%$ $Cu+Cu$ spectra at 62.4 GeV are shown. These centralities for the two colliding systems have similar $\langle N_{\scriptsize{\mbox{part}}}\rangle$ values as outlined in Table 2. The errors represent the statistical and systematic errors added in quadrature. They are found to be within the symbol size. The spectra are fitted to a Levy function discussed in the text.

Upper panels. $N_{\scriptsize{\mbox{part}}}$ scaled ($R^{N_{\scriptsize{\mbox{part}}}}_{AA}$) nuclear modification factors as a function of $p_{T}$ of $\phi$ mesons for $0-10\%$ and $20-30\%$ $Cu+Cu$ and $Au+Au$ collisions at $\sqrt{s_{NN}}=200$ GeV. Lower panel. Same as above for $N_{\scriptsize{\mbox{bin}}}$ scaled ($R^{N_{\scriptsize{\mbox{bin}}}}_{AA}$) nuclear modification factor. The error bars represent the statistical and systematic errors added in quadrature. The shaded band in upper panel around 1 at $p_{T}=4.5-5.5$ GeV/$c$ in the right side reflects the uncertainty in $N_{\scriptsize{\mbox{part}}}$ and that on the lower panel for $N_{\scriptsize{\mbox{bin}}}$ calculation for central $Au+Au$ collisions. The respective uncertainties for central $Cu+Cu$ collisions are of similar order.

More…

Search for the rare decay of the W boson into a pion and a photon in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 819 (2021) 136409, 2021.
Inspire Record 1829749 DOI 10.17182/hepdata.100165

A search is performed for the rare decay W$^\pm\to\pi^\pm\gamma$ in proton-proton collisions at $\sqrt{s} =$ 13 TeV. Data corresponding to an on W integrated luminosity of 137 fb$^{-1}$ were collected during 2016 to 2018 with the CMS detector. This analysis exploits a novel search strategy based on W boson production in top quark pair events. An inclusive search for the W$^\pm\to\pi^\pm\gamma$ decay is not optimal at the LHC because of the high trigger thresholds. Instead, a trigger selection is exploited in which the W boson originating from one of the top quarks is used to tag the event in a leptonic decay. The W boson emerging from the other top quark is used to search for the W$^\pm\to\pi^\pm\gamma$ signature. Such decays are characterized by an isolated track pointing to a large energy deposit, and by an isolated photon of large transverse momentum. The presence of b quark jets reduces the background from the hadronization of light-flavor quarks and gluons. The W$^\pm\to\pi^\pm\gamma$ decay is not observed. An upper exclusion limit is set to this branching fraction, corresponding to 1.50 $\times$ 10$^{-5}$ at 95% confidence level, whereas the expected upper limit exclusion limit is 0.85 $^{+0.52}_{-0.29}$ $\times$ 10$^{-5}$.

2 data tables

The product of signal efficiency and acceptance per year and per lepton channel (muon or electron).

Expected and observed upper exclusion limits on the branching fraction of the decay of a W boson into a pion and a photon, using 2016 to 2018 data.


Azimuthal anisotropy and correlations at large transverse momenta in p + p and Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 93 (2004) 252301, 2004.
Inspire Record 654226 DOI 10.17182/hepdata.100594

Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at $\sqrt{s_{_{NN}}}$= 200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in $p+p$ at the same energy. Elliptic anisotropy, $v_2$, is found to reach its maximum at $p_t \sim 3$ GeV/c, then decrease slowly and remain significant up to $p_t\approx 7$ -- 10 GeV/c. Stronger suppression is found in the back-to-back high-$p_t$ particle correlations for particles emitted out-of-plane compared to those emitted in-plane. The centrality dependence of $v_2$ at intermediate $p_t$ is compared to simple models based on jet quenching.

5 data tables

Azimuthal correlations in Au+Au col- lisions (squares) as a function of centrality (peripheral to cen- tral from left to right) compared to minimum bias azimuthal correlations in p + p collisions (circles). Errors are statistical only.

$v_{2}$ of charged particles as a function of transverse momentum from the two-particle cumu- lant method (triangles) and four-particle cumulant method (stars). Open circles show the 2-particle correlation results after subtracting the correlations measured in p + p collisions. Only statistical errors are shown.

Upper panel, Azimuthal distributions of associated particles for trigger particles in-plane (squares) and out-of-plane (triangles) for Au+Au collisions at centrality 20-60%. Open symbols are reflections of solid symbols around $\Delta \phi$ = 0 and $\Delta \phi$ = $\pi$. Elliptic flow contribution is shown by dashed lines. Lower panel, Distributions after substracting elliptic flow, and the corresponding measurement in p + p collisions (histogram).

More…

Longitudinal double-spin asymmetry for inclusive jet production in p+p collisions at sqrt(s)=200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 100 (2008) 232003, 2008.
Inspire Record 763822 DOI 10.17182/hepdata.98970

We report a new STAR measurement of the longitudinal double-spin asymmetry A_LL for inclusive jet production at mid-rapidity in polarized p+p collisions at a center-of-mass energy of sqrt(s) = 200 GeV. The data, which cover jet transverse momenta 5 < p_T < 30 GeV/c, are substantially more precise than previous measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit of polarized deep-inelastic scattering measurements.

5 data tables

(a) The raw detected jet yield in data (points) compared with the STAR Monte Carlo simulations. (b) Correlation between the reconstructed jet transverse momenta at the particle and detector levels. The points indicate the means and the vertical error bars show the r.m.s. widths of the associated particle jet distributions within the detector jet bins. The dashed line represents the condition when the particle and detector jet $p_{T}$ values are equal.

(a) The raw detected jet yield in data (points) compared with the STAR Monte Carlo simulations. (b) Correlation between the reconstructed jet transverse momenta at the particle and detector levels. The points indicate the means and the vertical error bars show the r.m.s. widths of the associated particle jet distributions within the detector jet bins. The dashed line represents the condition when the particle and detector jet $p_{T}$ values are equal.

Longitudinal double-spin asymmetry $A_{LL}$ for inclusive jet production at $\sqrt{s_{NN}}$ = 200 GeV versus jet $p_{T}$. The points show results for particle jets with statistical error bars, while the curves show predictions for NLO parton jets from one global analysis [14]. The gray boxes indicate the systematic uncertainties on the measured $A_{LL}$ values (vertical) and in the corrections to the measured jet $p_{T}$ and the conversion between particle jet and NLO parton jet $p_{T}$ (horizontal).

More…

K/pi Fluctuations at Relativistic Energies

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 103 (2009) 092301, 2009.
Inspire Record 810902 DOI 10.17182/hepdata.98971

We report results for $K/\pi$ fluctuations from Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6, 62.4, 130, and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider. Our results for $K/\pi$ fluctuations in central collisions show little dependence on the incident energies studied and are on the same order as results observed by NA49 at the Super Proton Synchrotron in central Pb+Pb collisions at $\sqrt{s_{NN}}$ = 12.3 and 17.3 GeV. We also report results for the collision centrality dependence of $K/\pi$ fluctuations as well as results for $K^{+}/\pi^{+}$, $K^{-}/\pi^{-}$, $K^{+}/\pi^{-}$, and $K^{-}/\pi^{+}$ fluctuations. We observe that the $K/\pi$ fluctuations scale with the multiplicity density, $dN/d\eta$, rather than the number of participating nucleons.

5 data tables

(Color online) The event-by-event $K/\pi$ ratio for 200 GeV Au+Au central collisions (0-5%) compared with the same quantity calculated from mixed events. The inset shows the ratio of the distribution from real events to that from mixed events. The errors shown are statistical.

(Color online) The event-by-event $K/\pi$ ratio for 200 GeV Au+Au central collisions (0-5%) compared with the same quantity calculated from mixed events. The inset shows the ratio of the distribution from real events to that from mixed events. The errors shown are statistical.

(Color online) Measured dynamical $K/\pi$ fluctuations in terms of σdyn for central collisions (0 - 5%) of 19.6, 62.4, 130, and 200 GeV Au+Au compared with the central collisions (0 - 3.5%) of Pb+Pb from NA49 [7] and the statistical hadronization (SH) model of Ref. [14]. The solid line represents the relationship of the incident energy dependence of $\sigma_{dyn}$ in central collisions to the collision centrality dependence of $\nu_{dyn,K\pi}$ at higher energies. Both statistical (vertical line with horizontal bar) and systematic (no vertical line) error bars are shown for the experimental data.

More…

Beam-Energy and System-Size Dependence of Dynamical Net Charge Fluctuations

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 79 (2009) 024906, 2009.
Inspire Record 791177 DOI 10.17182/hepdata.98972

We present measurements of net charge fluctuations in $Au + Au$ collisions at $\sqrt{s_{NN}} = $ 19.6, 62.4, 130, and 200 GeV, $Cu + Cu$ collisions at $\sqrt{s_{NN}} = $ 62.4, 200 GeV, and $p + p$ collisions at $\sqrt{s} = $ 200 GeV using the dynamical net charge fluctuations measure $\nu_{+-{\rm,dyn}}$. We observe that the dynamical fluctuations are non-zero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate $1/N_{ch}$ scaling, but display approximate $1/N_{part}$ scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.

10 data tables

(Color online) Dynamical net charge fluctuations, $\nu_{+−,dyn}$, of particles produced within pseudorapidity $|\eta|$ < 0.5, as function of the number of participating nucleons.

(Color online) Corrected values of dynamical net charge fluctuations ($\nu^{corr}_{+−,dyn}$) as a function of $\sqrt{s_{NN}}$. See text for details.

(Color online) Dynamical net charge fluctuations, $\nu_{+−,dyn}$, of particles produced with pseudorapidity $|\eta|$ < 0.5 scaled by (a) the multiplicity, $dN_{ch}/d\eta$. The dashed line corresponds to charge conservation effect and the solid line to the prediction for a resonance gas, (b) the number of participants, and (c) the number of binary collisions.

More…

Cross sections and transverse single-spin asymmetries in forward neutral pion production from proton collisions at s**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 171801, 2004.
Inspire Record 631869 DOI 10.17182/hepdata.101348

Measurements of the production of forward high-energy pi0 mesons from transversely polarized proton collisions at \sqrt{s}=200 GeV are reported. The cross section is generally consistent with next-to-leading order perturbative QCD calculations. The analyzing power is small at x_F below about 0.3, and becomes positive and large at higher x_F, similar to the trend in data at \sqrt{s}<=20 GeV. The analyzing power is in qualitative agreement with perturbative QCD model expectations. This is the first significant spin result seen for particles produced with p_T>1 GeV/c at a polarized proton collider.

2 data tables

Inclusive $\pi^{0}$ production cross section versus leading $\pi^{0}$ energy ($E_{\pi}$). The average transverse momentum ($\langle p_{T}\rangle$) is correlated with $E_{\pi}$, as the PFPD was at a fixed pseudorapidity ($\eta$). The inner error bars are statistical, and are smaller than the symbols for most points. The outer error bars combine these with the $E_{\pi}$-dependent systematic errors. The curves are NLO pQCD calculations evaluated at $\eta=3.8$ [29-31].

Analyzing powers versus Feynman $x$ ($x_{F}$). The average transverse momentum ($\langle p_{T}\rangle$) is correlated with $x_{F}$. The solid points are for identified $\pi^{0}$ mesons. The open points are for the total energy ($E_{\scriptsize{\mbox{tot}}}$), shifted by $x_{F}+0.01$. The inner error bars are statistical, and the outer combine these with the point-to-point systematic errors. The curves are from pQCD models evaluated at $p_{T}=1.5$ GeV/c [14-17]. The $A_{N}$ values are proportional to $A^{\scriptsize{\mbox{CNI}}}_{N}$, assumed to be 0.013 at 100 GeV.