Measurement of the production cross sections for a Z boson and one or more b jets in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 06 (2014) 120, 2014.
Inspire Record 1280529 DOI 10.17182/hepdata.64748

The production of a Z boson, decaying into two leptons and produced in association with one or more b jets, is studied using proton-proton collisions delivered by the LHC at a centre-of-mass energy of 7 TeV. The data were recorded in 2011 with the CMS detector and correspond to an integrated luminosity of 5 inverse femtobarns. The Z(ll) + b-jets cross sections (where ll = mu mu or ee) are measured separately for a Z boson produced with exactly one b jet and with at least two b jets. In addition, a cross section ratio is extracted for a Z boson produced with at least one b jet, relative to a Z boson produced with at least one jet. The measured cross sections are compared to various theoretical predictions, and the data favour the predictions in the five-flavour scheme, where b quarks are assumed massless. The kinematic properties of the reconstructed particles are compared with the predictions from the MADGRAPH event generator using the PYTHIA parton shower simulation.

4 data tables

The cross section at the particle level for the production of a Z boson with exactly one b-jet.

The cross section at the particle level for the production of a Z boson with at least two b-jets.

The cross section at the particle level for the production of a Z boson with at least one b-jet.

More…

Measurement of the t-channel single-top-quark production cross section and of the |Vtb| CKM matrix element in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 06 (2014) 090, 2014.
Inspire Record 1287736 DOI 10.17182/hepdata.64600

Measurements are presented of the t-channel single-top-quark production cross section in proton-proton collisions at sqrt(s) = 8 TeV. The results are based on a data sample corresponding to an integrated luminosity of 19.7 inverse femtobarns recorded with the CMS detector at the LHC. The cross section is measured inclusively, as well as separately for top (t) and antitop (t-bar), in final states with a muon or an electron. The measured inclusive t-channel cross section is sigma[t-ch] = 83.6 +/- 2.3 (stat.) +/- 7.4 (syst.) pb. The single t and t-bar cross sections are measured to be sigma[t-ch,t] = 53.8 +/- 1.5 (stat.) +/- 4.4 (syst.) pb and sigma[t-ch,t-bar] = 27.6 +/- 1.3 (stat.) +/- 3.7 (syst.) pb, respectively. The measured ratio of cross sections is R[t-ch] = sigma[t-ch,t]/sigma[t-ch,t-bar] = 1.95 +/- 0.10 (stat.) +/- 0.19 (syst.), in agreement with the standard model prediction. The modulus of the Cabibbo-Kobayashi-Maskawa matrix element Vtb is extracted and, in combination with a previous CMS result at sqrt(s) = 7 TeV, a value abs(Vtb) = 0.998 +/- 0.038 (exp.) +/- 0.016 (theo.) is obtained.

4 data tables

The measured inclusive single-top-quark production cross section and the separate single top-quark and top-antiquark production cross sections in the t-channel.

The ratio of the inclusive single-top-quark production cross section in the t-channel at 8 TeV to the cross section at 7 TeV.

The ratio of the top-quark production cross section in the t-channel to the top-antiquark production cross section in the t-channel.

More…

Measurement of the ratio B(t to Wb)/B(t to Wq) in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 736 (2014) 33-57, 2014.
Inspire Record 1289223 DOI 10.17182/hepdata.64489

The ratio of the top-quark branching fractions $R = B(t \to Wb)/B(t \to Wq)$, where the denominator includes the sum over all down-type quarks (q = b, s, d), is measured in the $t\bar{t}$ dilepton final state with proton-proton collision data at $\sqrt{s}$ = 8 TeV from an integrated luminosity of 19.7 inverse-femtobarns, collected with the CMS detector. In order to quantify the purity of the signal sample, the cross section is measured by fitting the observed jet multiplicity, thereby constraining the signal and background contributions. By counting the number of b jets per event, an unconstrained value of R = 1.014 $\pm$ 0.003 (stat) $\pm$ 0.032 (syst) is measured, in good agreement with the standard model prediction. A lower limit R greater than 0.955 at the 95% confidence level is obtained after requiring R lower than one, and a lower limit on the Cabibbo-Kobayashi-Maskawa matrix element |$V_tb$| greater than 0.975 is set at 95% confidence level. The result is combined with a previous CMS measurement of the t-channel single-top-quark cross section to determine the top-quark total decay width, $\Gamma_t$ = 1.36 $\pm$ 0.02 (stat)$^{+0.14}_{-0.11}$ (syst) GeV.

3 data tables

The measured TOP TOPBAR production cross section.

The measured ratio of branching fractions, R = BR(TOP --> W BOTTOM) / BR(TOP --> W QUARK) where the denominator includes the sum over all down-type quarks (QUARK = BOTTOM, STRANGE, DOWN). The combined measurement and the individual measurements from the three channels considered are presented.

An indirect measurement of the top-quark total decay width.


Measurement of the differential and double-differential Drell-Yan cross sections in proton-proton collisions at 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 12 (2013) 030, 2013.
Inspire Record 1262319 DOI 10.17182/hepdata.62207

Measurements of the differential and double-differential Drell-Yan cross sections are presented using an integrated luminosity of 4.5(4.8) inverse femtobarns in the dimuon (dielectron) channel of proton-proton collision data recorded with the CMS detector at the LHC at $\sqrt{s}$ = 7 TeV. The measured inclusive cross section in the Z-peak region (60-120 GeV) is $\sigma(\ell \ell)$ = 986.4 +/- 0.6 (stat.) +/- 5.9 (exp. syst.) +/- 21.7 (th. syst.) +/- 21.7 (lum.) pb for the combination of the dimuon and dielectron channels. Differential cross sections $d\sigma/dm$ for the dimuon, dielectron, and combined channels are measured in the mass range 15 to 1500 GeV and corrected to the full phase space. Results are also presented for the measurement of the double-differential cross section $d^2\sigma/dm d |y|$ in the dimuon channel over the mass range 20 to 1500 GeV and absolute dimuon rapidity from 0 to 2.4. These measurements are compared to the predictions of perturbative QCD calculations at next-to-leading and next-to-next-to-leading orders using various sets of parton distribution functions.

10 data tables

Normalization factors for the cross section measurements from the Z-peak region (60 < M < 120 GeV) with associated uncertainties. The measurements are given in the muon, electron and combined channels. The three systematic uncertainties correspond to experimental, theoretical and luminosity.

The DY cross section measurements for the muon channel normalized to the Z-peak region, pre- and post-FSR, as measured in the full acceptance and for the CMS detector acceptance. The uncertainty indicates the experimental (statistical and systematic) uncertainties summed in quadrature with the theoretical uncertainty resulting from the model-dependent kinematic distributions inside each bin.

The DY cross section measurements for the electron channel normalized to the Z-peak region, pre- and post-FSR, as measured in the full acceptance and for the CMS detector acceptance. The uncertainty indicates the experimental (statistical and systematic) uncertainties summed in quadrature with the theoretical uncertainty resulting from the model-dependent kinematic distributions inside each bin.

More…

Transverse momentum cross section of $e^+e^-$ pairs in the $Z$-boson region from $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV

The CDF collaboration Aaltonen, T. ; Alvarez Gonzalez, B. ; Amerio, S. ; et al.
Phys.Rev.D 86 (2012) 052010, 2012.
Inspire Record 1124333 DOI 10.17182/hepdata.60522

The transverse momentum cross section of $e^+e^-$ pairs in the $Z$-boson mass region of 66-116 GeV/$c^2$ is precisely measured using Run II data corresponding to 2.1 fb$^{-1}$ of integrated luminosity recorded by the Collider Detector at Fermilab. The cross section is compared with quantum chromodynamic calculations. One is a fixed-order perturbative calculation at ${\cal O}(\alpha_s^2)$, and the other combines perturbative predictions at high transverse momentum with the gluon resummation formalism at low transverse momentum. Comparisons of the measurement with calculations show reasonable agreement. The measurement is of sufficient precision to allow refinements in the understanding of the transverse momentum distribution.

2 data tables

Total integrated cross section.

The differential PT cross section as a function of PT.


Search for photoproduction of psi(3105)

Andrews, D.E. ; Harvey, J. ; Lobkowicz, F. ; et al.
Phys.Rev.Lett. 34 (1975) 231-233, 1975.
Inspire Record 106690 DOI 10.17182/hepdata.60290

The product of the photoproduction cross section at 11.1 GeV for ψ(3105) on nucleons times the branching ratio for ψ into e+e− is less than 75 pb, at the 90% confidence level. This result implies a ψ-nucleon total cross section of less than 1.2 mb.

1 data table

The branching ratio for J/PSI --> E+ E- is taken as 0.06.


Measurement of Bottom versus Charm as a Function of Transverse Momentum with Electron-Hadron Correlations in p+p Collisions at sqrt(s)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 103 (2009) 082002, 2009.
Inspire Record 816469 DOI 10.17182/hepdata.57326

The momentum distribution of electrons from semi-leptonic decays of charm and bottom for mid-rapidity |y|<0.35 in p+p collisions at sqrt(s)=200 GeV is measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range 2 < p_T < 7 GeV/c. The ratio of the yield of electrons from bottom to that from charm is presented. The ratio is determined using partial D/D^bar --> e^{+/-} K^{-/+} X (K unidentified) reconstruction. It is found that the yield of electrons from bottom becomes significant above 4 GeV/c in p_T. A fixed-order-plus-next-to-leading-log (FONLL) perturbative quantum chromodynamics (pQCD) calculation agrees with the data within the theoretical and experimental uncertainties. The extracted total bottom production cross section at this energy is \sigma_{b\b^bar}= 3.2 ^{+1.2}_{-1.1}(stat) ^{+1.4}_{-1.3}(syst) micro b.

6 data tables

Bottom contribution to the electrons from heavy flavor decay as a function of PT. These values has been obtained using g3data software which to extract the data from the plot and should therefore be used with caution. The g3data program indicates an extra uncertainty of 0.01 on these values.

Differential bottom production cross section at mid rapidity (y=0) To obtain this value, the differential "bottom-decay" electrons cross-section has been extrapolated to PT=0 using the spectrum shape predicted by pQCD. The b->e branching ratio used was 10 +-1%.

Invariant cross section of electrons from heavy flavor decay versus PT These values has been obtained using g3data software which to extract the data from the plot and should therefore be used with caution. The values in the last column indicate the level of uncertainty intoduced by g3data.

More…

Measurement of high-p(T) single electrons from heavy-flavor decays in p + p collisions at s**(1/2) = 200-GeV.

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 97 (2006) 252002, 2006.
Inspire Record 725484 DOI 10.17182/hepdata.57283

The momentum distribution of electrons from decays of heavy flavor (charm and beauty) for midrapidity |y| < 0.35 in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range 0.3 < p_T < 9 GeV/c. Two independent methods have been used to determine the heavy flavor yields, and the results are in good agreement with each other. A fixed-order-plus-next-to-leading-log pQCD calculation agrees with the data within the theoretical and experimental uncertainties, with the data/theory ratio of 1.72 +/- 0.02^stat +/- 0.19^sys for 0.3 < p_T < 9 GeV/c. The total charm production cross section at this energy has also been deduced to be sigma_(c c^bar) = 567 +/- 57^stat +/- 224^sys micro barns.

3 data tables

Heavy-flavor decay electrons invariant differential cross-section An additional 10% normalization uncertainty is to add.

Differential charm cross section To obtain this value, the differential "charm-decay" electrons cross-section, integrated over PT>0.4 GeV/c, has been extrapolated down to PT=0 using the spectrum shape predicted by a fixed-order-plus-next-to-leading-log (FONLL)calculation. The contribution from beauty and beauty cascades, estimated to be 0.1 microbarn, has been substracted, and the c->e branching ratio used was 9.5 +- 1.0%.

Total charm cross section To obtain the total charm cross section, the differential charm cross section has been extrapolated to the whole rapidity range, using a HVQMNR rapidity distribution with aCTEQ5M PDF.


Dilepton mass spectra in p+p collisions at sqrt(s)= 200 GeV and the contribution from open charm

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Lett.B 670 (2009) 313-320, 2009.
Inspire Record 778611 DOI 10.17182/hepdata.73669

The PHENIX experiement has measured the electron-positron pair mass spectrum from 0 to 8 GeV/c^2 in p+p collisions at sqrt(s)=200 GeV. The contributions from light meson decays to e^+e^- pairs have been determined based on measurements of hadron production cross sections by PHENIX. They account for nearly all e^+e^- pairs in the mass region below 1 GeV/c^2. The e^+e^- pair yield remaining after subtracting these contributions is dominated by semileptonic decays of charmed hadrons correlated through flavor conservation. Using the spectral shape predicted by PYTHIA, we estimate the charm production cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) \mu b, which is consistent with QCD calculations and measurements of single leptons by PHENIX.

2 data tables

Differential charm cross section at mid rapidity An additional +-39.5 microbarn error, due to the validity of the model used to extrapolate the data, is not included The contribution from beauty estimated to be 3.7 microbarn, has been subtracted. The c->e branching ratio used was 9.5 +-1.0%.

Total charm cross section An additional systemactic error of +- 200 microbarn, due to the validity of the model used to extrapolate the data, is not included. To obtain the total charm cross section, the differential charm cross section has been extrapolated to the whole rapidity range, using a HVQMNR rapidity distribution with aCTEQ5M PDF.


Centrality dependence of charm production from single electrons measurement in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 082301, 2005.
Inspire Record 660611 DOI 10.17182/hepdata.57254

The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 4.0 GeV/c) of single electrons as a function of centrality in Au+Au collisions at sqrt(s_NN) = 200 GeV. Contributions to the raw spectra from photon conversions and Dalitz decays of light neutral mesons are measured by introducing a thin (1.7% X_0) converter into the PHENIX acceptance and are statistically removed. The subtracted ``non-photonic'' electron spectra are primarily due to the semi-leptonic decays of hadrons containing heavy quarks (charm and bottom). For all centralities, charm production is found to scale with the nuclear overlap function, T_AA. For minimum-bias collisions the charm cross section per binary collision is N_cc^bar/T_AA = 622 +/- 57 (stat.) +/- 160 (sys.) microbarns.

18 data tables

Value of the Alpha power as used in a fit of dN/dy versus Ncoll of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value only includes data from Au+Au collisions The value of Alpha = 1 is the expectation in the absence of medium effects.

Value of the Alpha power as used in a fit of dN/dy versus Ncoll, of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value is calculated including previous data of p+p collisions, measured by PHENIX, in addition of the Au+Au data The value of Alpha = 1 is the expectation in the absence of medium effects.

Spectrum in transverse momentum of electrons created in open heavy flavor decays, for minimum bias events.

More…