Electroweak Effects in $e^+ e^- \to \mu^+ \mu^-$ at 29-{GeV}

Fernandez, E. ; Ford, William T. ; Read, Alexander L. ; et al.
Phys.Rev.Lett. 50 (1983) 1238, 1983.
Inspire Record 188749 DOI 10.17182/hepdata.20560

A measurement of the cross section for production of collinear muon pairs based upon a sample of about 3000 events observed in the MAC detector at the storage ring PEP is presented. From the angular asymmetry Aμμ=0.076±0.018 the axial-vector weak neutral coupling is found to be given by gAegAμ=0.31±0.08.

2 data tables

Data on non-collinearity and angular distribution.

Asymmetry measurement based on extrapolation of number of events to 4 PI acceptance.


Tests of QED at 29-GeV Center-Of-Mass Energy

Bender, D. ; Derrick, M. ; Fernandez, E. ; et al.
Phys.Rev.D 30 (1984) 515, 1984.
Inspire Record 199464 DOI 10.17182/hepdata.23593

During the initial data run with the High Resolution Spectrometer (HRS) at SLAC PEP, an integrated luminosity of 19.6 pb−1 at a center-of-mass energy of 29 GeV was accumulated. The data on Bhabha scattering and muon pair production are compared with the predictions of QED and the standard model of electroweak interactions. The measured forward-backward charge asymmetry in the angular distribution of muon pairs is -8.4%±4.3%. A comparison between the data and theoretical predictions places limits on alternative descriptions of leptons and their interactions. The existence of heavy electronlike or photonlike objects that alter the structure of the QED vertices or modify the propagator are studied in terms of the QED cutoff parameters. The Bhabha-scattering results give a lower limit on a massive photon and upper limits on the effective size of the electron of Λ+>121 GeV and Λ−>118 GeV at the 95% confidence level. Muon pair production yields Λ+>172 GeV and Λ−>172 GeV. If electrons have substructure, the magnitude and character of the couplings of the leptonic constituents affects the Bhabha-scattering angular distributions to such an extent that limits on the order of a TeV can be extracted on the effective interaction length of the components. For models in which the constituents interact with vector couplings of strength g24π∼1, the energy scale ΛVV for the contact interaction is measured to be greater than 1419.0 GeV at the 95% confidence level. We set limits on the production of supersymmetric scalar electrons through s-channel single-photon annihilation and t-channel inelastic scattering. Using events with two noncollinear electrons and no other charged or observed neutral particles in the final state, we see one event which is consistent with a simple supersymmetric model but which is also consistent with QED. This allows us to exclude the scalar electron to 95% confidence level in the mass range 1.8 to 14.2 GeV/c2.

3 data tables

Comparison of Bhabhas with QED.

Muon angular distributions.

Forward-backward asymmetry from full angular range.


WEAK NEUTRAL CURRENT EFFECTS IN e+ e- ---> mu+ mu- AT 29-GeV

Fernandez, E. ; Ford, William T. ; Read, Alexander L. ; et al.
SLAC-PUB-3133, 1983.
Inspire Record 190846 DOI 10.17182/hepdata.18659

None

2 data tables

No description provided.

Data extrapolated to full solid angle.


Experimental Determination of Elastic and Topological Cross-sections in 48.9-GeV/c anti-p p Interactions

Zissa, D.E. ; Barnes, V.E. ; Carmony, D.D. ; et al.
Phys.Rev.D 21 (1980) 3059, 1980.
Inspire Record 8434 DOI 10.17182/hepdata.24179

The elastic and topological p¯p cross sections have been measured at 48.9 GeV/c in the Fermilab proportional-wire-chamber-30-in.-bubble-chamber hybrid spectrometer. The elastic cross section is 7.81±0.24 mb and the slope of the elastic differential cross section at t=0 is 13.4±0.8 GeV−2. Further, the moments of the inelastic topological-cross-section distribution are 〈nc〉=5.69±0.03, 〈nc〉D=2.10±0.02, and f2cc=1.67±0.12.

3 data tables

Axis error includes +- 0.0/0.0 contribution (?////DALITZ PAIRS. VEES AND GAMMA CONVERSIONS NEAR THE VERTEX WERE DETERMINED TO BE NEGLIGIBLE. LOW -T ELASTIC EVENTS//ODD-PRONG EVENTS APPARANTLY NOT CAUSED BY SECONDARY INTERACTIONS WERE MOVED TO THE NEXT HIGHER MULTIPLICITY ON THE ASSUMPTION THAT A SHORT TRACK WAS NOTVISIBLETOTAL AP-P CROSS SECTION OF 43.86+-0.25 MB FROM A.S.CARROL ET AL.PRL 33, 928(1974) WAS USED FOR NORMALIZATION).

Axis error includes +- 0.0/0.0 contribution (?////DALITZ PAIRS. VEES AND GAMMA CONVERSIONS NEAR THE VERTEX WERE DETERMINED TO BE NEGLIGIBLE. LOW -T ELASTIC EVENTS//ODD-PRONG EVENTS APPARANTLY NOT CAUSED BY SECONDARY INTERACTIONS WERE MOVED TO THE NEXT HIGHER MULTIPLICITY ON THE ASSUMPTION THAT A SHORT TRACK WAS NOTVISIBLETOTAL AP-P CROSS SECTION OF 43.86+-0.25 MB FROM A.S.CARROL ET AL.PRL 33, 928(1974) WAS USED FOR NORMALIZATION).

No description provided.


Intermittency in hadronic decays of the Z0

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 262 (1991) 351-361, 1991.
Inspire Record 314631 DOI 10.17182/hepdata.29397

A factorial moment analysis has been performed on the differential multiplicity distributions of hadronic final states of the Z 0 recorded with the OPAL detector at LEP. The moments of the one-dimensional rapidity and the two-dimensional rapidity versus azimuthal angle distributions are found to exhibit “intermittent” behaviour attributable to the jet structure of the events. The moments are reproduced by both parton shower and matrix element QCD based hadronisation models. No evidence for fluctuations beyond those attributable to jet structure is observed.

3 data tables

Corrected factorial moments of the rapidity distribution with respect to the sphericity axis. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.

Corrected factorial moments of the rapidity distribution with respect to the electron beam axis. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.

Corrected factorial moments of the rapidity (with respect to the sphericityaxis) versus PHI distribution. For each point the NUMBER of bins are constructe d from equal numbers of YRAP and PHI bins. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.