MEASUREMENT OF THE DIFFERENTIAL CROSS-SECTION FOR ELASTIC K- NEUTRON SCATTERING IN THE center-of-mass ENERGY RANGE 1.60-GEV - 1.74-GEV

Braun, O. ; Hepp, V. ; Strobele, H. ; et al.
Nucl.Phys.B 203 (1982) 349-361, 1982.
Inspire Record 183661 DOI 10.17182/hepdata.34171

The final state K − pn has been analyzed in a K − deuterium bubble chamber experiment at K − momenta between 680 and 840 MeV/ c . Differential cross sections for elastic K − p and K − n scattering in the c.m. energy range of 1.60–1.74 GeV are presented. The results for K − p→K − p agree well with existing data obtained with hydrogen targets. The results for K − n→K − n are lower but still compatible with recent measurements from a counter experiment.

4 data tables

No description provided.

No description provided.

PLAB IS THE EFFECTIVE KAON LAB MOMENTA CORRESPONDING TO THE GIVEN CM ENERGY ASSUMING AN ON-SHELL TARGET NUCLEON AT REST.

More…

Measurement of K- p Elastic Differential Cross-Sections Between 610-MeV/c and 943-MeV/c

Adams, C.J. ; Davies, J.D. ; Dowell, J.D. ; et al.
Nucl.Phys.B 96 (1975) 54-66, 1975.
Inspire Record 2402 DOI 10.17182/hepdata.31930

Measurements of K − p elastic scattering have been carried out at 14 momenta between 610 MeV/ c and 943 MeV/ c over the angular range −0.9 < cos θ < 0.9. The results agree well with the best existing data and have significantly smaller errors.

4 data tables

No description provided.

DIFFERENTIAL CROSS SECTION AT 0 DEG CALCULATED FROM DISPERSION RELATIONS AND AT 180 DEG INTERPOLATED FROM BUBBLE CHAMBER MEASUREMENTS.

LEGENDRE POLYNOMIAL FIT, INCLUDING FORWARD AND BACKWARD POINTS.

More…

K- n Elastic Scattering Between 610-MeV/c and 840-MeV/c

Damerell, C.J.S. ; Hotchkiss, M.J. ; Wickens, F. ; et al.
Nucl.Phys.B 129 (1977) 397-414, 1977.
Inspire Record 126184 DOI 10.17182/hepdata.35225

Elastik K − n ( I = 1) differential cross sections have been measured at 14 momenta between 610 and 940 MeV/ c , over the c.m. angular range −0.7 < cos θ ∗ < 0.8 . The results, which cover the c.m. energy range 1610–1765 MeV, have been fitted with Legendre polynomials and compared with some existing predictions from a partial-wave analysis.

6 data tables

No description provided.

No description provided.

SEMI-INCLUSIVE CROSS SECTION.

More…

Backward $K^- p$ Elastic Scattering and 0-degree $\Sigma^- \pi^+$ Production

Alston-Garnjost, M. ; Hamilton, R.P. ; Kenney, R.W. ; et al.
Phys.Rev.D 21 (1980) 1191-1205, 1980.
Inspire Record 131715 DOI 10.17182/hepdata.24193

In this paper we report measurements of the backward K−p differential cross section at 49 momenta covering the momentum range 476-1084 MeV/c. The statistical precision achieved, typically 2.5%, is an order of magnitude better than previous measurements. The systematic errors for this reaction are about 1%. The differential cross section for the reaction K−p→Σ−π+ where the π+ emerges at 0° has also been measured at 32 momenta with comparable improvement in precision over previous experiments. A partial-wave analysis of the K¯N channels including the new K−p backward elastic data is presented.

2 data tables

No description provided.

No description provided.


Coulomb-Nuclear Interference in pi+- p and K+- p Elastic Scattering Below 3-GeV: Measurements, Real Parts and K+- p Dispersion Relations

Baillon, P. ; Bricman, C. ; Ferro-Luzzi, M. ; et al.
Nucl.Phys.B 105 (1976) 365-430, 1976.
Inspire Record 101037 DOI 10.17182/hepdata.13243

The differential cross sections for π + p elastic scattering at0.6, 1.0, 1.5, 2.0, GeV/ c for π - p at 1.0, 1.5, 2.0 GeV/ c , for K - p at 1.2, 1.8, 2.6 GeV/ c and for K - p at 0.9, 1.2, 1.4, 1.6, 1.8, 2.6 GeV/ c have been measured with an overall accuracy ofthe order of 1 to 2% in an electronics experiment over the angular region corresponding to momentum transfer t between 0.0005 and 0.10 GeV 2 . Making use of the interference effects between the Coulomb and the nuclear interaction, we have determined the magnitude and sign of the real part of the scattering amplitude near t = 0. The K ± p real parts have been used in a dispersion relation to derive the value of the KNΛ coupling constant.

20 data tables

'TABLE'. 'BIN'.

'TABLE'. 'BIN'.

'TABLE'. 'BIN'.

More…