Bubble Chamber Study of Photoproduction by 2.8-GeV and 4.7-GeV Polarized Photons. 1. Cross-Section Determinations and Production of rho0 and Delta++ in the Reaction gamma p --> p pi+ pi-

Ballam, Joseph ; Chadwick, G.B. ; Gearhart, R. ; et al.
Phys.Rev.D 5 (1972) 545, 1972.
Inspire Record 67165 DOI 10.17182/hepdata.3635

Photoproduction is studied at 2.8 and 4.7 GeV using a linearly polarized monoenergetic photon beam in a hydrogen bubble chamber. We discuss the experimental procedure, the determination of channel cross sections, and the analysis of the channel γp→pπ+π−. A model-independent analysis of the ρ0-decay angular distribution allows us to measure nine independent density-matrix elements. From these we find that the reaction γp→pρ0 proceeds almost completely through natural parity exchange for squared momentum transfers |t|<1 GeV2 and that the ρ production mechanism is consistent with s-channel c.m. helicity conservation for |t|<0.4 GeV2. A cross section for the production of π+π− pairs in the s-channel c.m. helicity-conserving p-wave state is determined. The ρ mass shape is studied as a function of momentum transfer and is found to be inconsistent with a t-independent Ross-Stodolsky factor. Using a t-dependent parametrization of the ρ0 mass shape we derive a phenomenological ρ0 cross section. We compare our phenomenological ρ0 cross section with other experiments and find good agreement for 0.05<|t|<1 GeV2. We discuss the discrepancies in the various determinations of the forward differential cross section. We study models for ρ0 photoproduction and find that the Söding model best describes the data. Using the Söding model we determine a ρ0 cross section. We determine cross sections and nine density-matrix elements for γp→Δ++π−. The parity asymmetry for Δ++ production is incompatible with simple one-pion exchange. We compare Δ++ production with models.

20 data tables

FROM QUOTED TOPOLOGICAL CROSS SECTIONS. 1.44 GEV CROSS SECTION PUBLISHED PREVIOUSLY.

No description provided.

NO TMIN CORRECTION HAS BEEN MADE.

More…

Inclusive Lambda/c production in e+ e- annihilations at s**(1/2) = 10.54-GeV and in Upsilon(4S) decays.

The BaBar collaboration Aubert, Bernard ; Bona, M. ; Boutigny, D. ; et al.
Phys.Rev.D 75 (2007) 012003, 2007.
Inspire Record 725377 DOI 10.17182/hepdata.22089

We present measurements of the total production rates and momentum distributions of the charmed baryon $\Lambda_c^+$ in $e^+e^- \to$ hadrons at a center-of-mass energy of 10.54 GeV and in $\Upsilon(4S)$ decays. In hadronic events at 10.54 GeV, charmed hadrons are almost exclusively leading particles in $e^+e^- \to c\bar{c}$ events, allowing direct studies of $c$-quark fragmentation. We measure a momentum distribution for $\Lambda_c^+$ baryons that differs significantly from those measured previously for charmed mesons. Comparing with a number of models, we find none that can describe the distribution completely. We measure an average scaled momentum of $\left< x_p \right> = 0.574\pm$0.009 and a total rate of $N_{\Lambda c}^{q\bar{q}} = 0.057\pm$0.002(exp.)$\pm$0.015(BF) $\Lambda_c^+$ per hadronic event, where the experimental error is much smaller than that due to the branching fraction into the reconstructed decay mode, $pK^-\pi^+$. In $\Upsilon (4S)$ decays we measure a total rate of $N_{\Lambda c}^{\Upsilon} = 0.091\pm$0.006(exp.)$\pm$0.024(BF) per $\Upsilon(4S)$ decay, and find a much softer momentum distribution than expected from B decays into a $\Lambda_c^+$ plus an antinucleon and one to three pions.

4 data tables

LAMBDA/C+ differential production rate per hadronic event for the continuum at cm energy 10.54 GeV.

The integrated number of LAMBDA/C+'s per hadronic event for the continuum at cm energy 10.54 GeV.

LAMBDA/C+ differential production rate per UPSILON(4S) decay at cm energy 10.58 GeV.

More…

Measurement of the isolated prompt photon cross-sections in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, Dante E. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 68 (1992) 2734-2738, 1992.
Inspire Record 333081 DOI 10.17182/hepdata.19869

We present a measurement of the cross section for production of isolated prompt photons in p¯p collisions at √s =1.8 TeV. The cross section, measured as a function of transverse momentum (PT), agrees qualitatively with QCD calculations but has a steeper slope at low PT.

1 data table

Additional normalization systematic uncertainty of 27 pct for first eleven entries, and +32 pct(-46 pct) for last four entries.


Jet fragmentation properties of anti-p p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 65 (1990) 968-971, 1990.
Inspire Record 297585 DOI 10.17182/hepdata.19919

The charged-particle fractional momentum distribution within jets, D(z), has been measured in dijet events from 1.8-TeV p¯p collisions in the Collider Detector at Fermilab. As expected from scale breaking in quantum chromodynamics, the fragmentation function D(z) falls more steeply as dijet invariant mass increases from 60 to 200 GeV/c2. The average fraction of the jet momentum carried by charged particles is 0.65±0.02(stat)±0.08(syst).

1 data table

No description provided.


Two Jet Differential Cross-Section in anti-p p Collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 64 (1990) 157, 1990.
Inspire Record 283353 DOI 10.17182/hepdata.19998

The two-jet differential cross section d3σ(p¯p→jet 1+jet 2+X)/dEtdη1dη2, averaged over -0.6≤η1≤0.6, at √s =1.8 TeV, has been measured in the Collider Detector at Fermilab. The predictions of leading-order quantum chromodynamics for most choices of structure functions show agreement with the data.

6 data tables

Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.

Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.

Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.

More…

Limit on the B ---> u Coupling from Semileptonic B Decay

The CLEO collaboration Chen, A. ; Goldberg, M. ; Horwitz, N. ; et al.
Phys.Rev.Lett. 52 (1984) 1084, 1984.
Inspire Record 199380 DOI 10.17182/hepdata.20474

We have used the momentum spectrum of leptons produced in semileptonic B-meson decays to set a 90%-confidence-level upper limit on Γ(b→ulν)Γ(b→clν) of 4%. We also measure the semileptonic branching fractions of the B meson to be (12.0±0.7±0.5)% for electrons and (10.8±0.6±1.0)% for muons.

2 data tables

No description provided.

No description provided.