Energy Dependence of $K/\pi$, $p/\pi$, and $K/p$ Fluctuations in Au+Au Collisions from $\rm \sqrt{s_{NN}}$ = 7.7 to 200 GeV

The STAR collaboration Abdelwahab, N.M. ; Adamczyk, L. ; Adkins, J.K. ; et al.
Phys.Rev.C 92 (2015) 021901, 2015.
Inspire Record 1322965 DOI 10.17182/hepdata.72254

A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy-ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical $K\pi$, $p\pi$, and $Kp$ fluctuations as measured by the STAR experiment in central 0-5\% Au+Au collisions from center-of-mass collision energies $\rm \sqrt{s_{NN}}$ = 7.7 to 200 GeV are presented. The observable $\rm \nu_{dyn}$ was used to quantify the magnitude of the dynamical fluctuations in event-by-event measurements of the $K\pi$, $p\pi$, and $Kp$ pairs. The energy dependences of these fluctuations from central 0-5\% Au+Au collisions all demonstrate a smooth evolution with collision energy.

1 data table

$p\pi$, Kp, and $K\pi$ fluctuations as a function of collision energy, expressed as $v_{dyn,p\pi}$, $v_{dyn,Kp}$, and $v_{dyn,K\pi}$ respectively. Shown are data from central (0-5%) Au+Au collisions at energies from $\sqrt{s_{\rm NN}}$ = 7.7 to 200 GeV from the STAR experiment.


Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ and 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 750 (2015) 64-71, 2015.
Inspire Record 1340691 DOI 10.17182/hepdata.72236

The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity $|y_{ee}|<1$ in minimum-bias Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened $\rho$ spectral function for $M_{ee}<1.1$ GeV/$c^{2}$. The integrated dielectron excess yield at $\sqrt{s_{NN}}$ = 19.6 GeV for $0.4<M_{ee}<0.75$ GeV/$c^2$, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at $\sqrt{s_{NN}}$ = 17.3 GeV. For $\sqrt{s_{NN}}$ = 200 GeV, the normalized excess yield in central collisions is higher than that at $\sqrt{s_{NN}}$ = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV is longer than those in peripheral collisions and at lower energies.

6 data tables

Reconstructed dielectron unlike-sign pairs, like-sign pairs and signal distributions, together with the signal to background ratio (S/B). All columns are presented as a function of dielectron invariant mass in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

Dielectron invariant mass spectrum in the STAR acceptance (|$y_{ee}$| < 1, 0.2 < $p_T^e$ < 3 GeV/c, |$\eta^e$ | < 1) after efficiency correction in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

Hadronic cocktail consisting of the decays of light hadrons and correlated decays of charm in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

More…

Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 116 (2016) 112302, 2016.
Inspire Record 1414638 DOI 10.17182/hepdata.72069

We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from $\sqrt{s_{NN}}=7.7$ GeV to 200 GeV. The third harmonic $v_3^2\{2\}=\langle \cos3(\phi_1-\phi_2)\rangle$, where $\phi_1-\phi_2$ is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs $\Delta\eta = \eta_1-\eta_2$. Non-zero {\vthree} is directly related to the previously observed large-$\Delta\eta$ narrow-$\Delta\phi$ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity Quark Gluon Plasma (QGP) phase. For sufficiently central collisions, $v_3^2\{2\}$ persist down to an energy of 7.7 GeV suggesting that QGP may be created even in these low energy collisions. In peripheral collisions at these low energies however, $v_3^2\{2\}$ is consistent with zero. When scaled by pseudorapidity density of charged particle multiplicity per participating nucleon pair, $v_3^2\{2\}$ for central collisions shows a minimum near {\snn}$=20$ GeV.

81 data tables

Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.

Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.

Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.

More…

Two-pion Bose-Einstein correlations in central PbPb collisions at sqrt(s_NN) = 2.76 TeV

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Lett.B 696 (2011) 328-337, 2011.
Inspire Record 881884 DOI 10.17182/hepdata.56743

The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.

14 data tables

Projections of the correlation function C.

Projections of the correlation function C.

Projections of the correlation function C.

More…

Pion and kaon production in central Pb+Pb collisions at 20A and 30A GeV: Evidence for the onset of deconfinement

The NA49 collaboration Alt, C. ; Anticic, T. ; Baatar, B. ; et al.
Phys.Rev.C 77 (2008) 024903, 2008.
Inspire Record 762554 DOI 10.17182/hepdata.25169

Results on charged pion and kaon production in central Pb+Pb collisions at 20A and 30A GeV are presented and compared to data at lower and higher energies. A rapid change of the energy dependence is observed around 30A GeV for the yields of pions and kaons as well as for the shape of the transverse mass spectra. The change is compatible with the prediction that the threshold for production of a state of deconfined matter at the early stage of the collisions is located at low SPS energies.

13 data tables

Transverse mass spectra for pion production in the central rapidity region for collisions at 20 GeV per nucleon.

Transverse mass spectra for pion production in the central rapidity region for collisions at 30 GeV per nucleon.

Transverse mass spectra for kaon production in the central rapidity region for collisions at 20 GeV per nucleon.

More…

Pion multiplicity in nuclear collisions

Gazdzicki, M. ; Roehrich, D. ;
Z.Phys.C 65 (1995) 215-223, 1995.
Inspire Record 398172 DOI 10.17182/hepdata.14107

Data on the mean multiplicity ofπ- produced in minimum bias proton-proton, proton-neutron and proton-nucleus interactions as well as central nucleus-nucleus collisions at momenta of 1.4–400 GeV/c per nucleon have been compiled and studied. The results for neutron-neutron and nucleon-nucleon interactions were then constructed. The dependence of the mean pion multiplicity in proton-nucleus interactions and central collisions of identical nuclei are studied as a function of the collision energy and the nucleus mass number. The number of produced pions per participant nucleon in central collisions of identical nuclei is found to be independent of the number of participants at a fixed incident momentum per nucleon. The mean multiplicity of negatively charged hadrons per participant nucleon for central nucleus-nucleus collisions is lower by about 0.12 than the corresponding multiplicity for nucleon-nucleon interactions atpLAB≲15 A·GeV/c, whereas the result at 200 A·GeV/c is above the corresponding nucleon-nucleon multiplicity. This may indicate change of the collision dynamics at high energy.

13 data tables

No description provided.

No description provided.

MEAN MULTIPLICITY OF N N COLLISIONS IS DEDUCED FROM PROTON-PROTON DATA.

More…

High Statistics Study of ($\sim$ 10$^6$ events) of $J/\psi$ Production and $\Upsilon$ Production in the energy range 150 to 280 GeV by $\pi^\pm$, $p^\pm$ incident particle

The Saclay-CERN-College de France-Ecole Poly-Orsay collaboration Badier, J. ; Boucrot, J. ; Bourotte, J. ; et al.
AIP Conf.Proc. 68 (1981) 201-204, 1981.
Inspire Record 154782 DOI 10.17182/hepdata.49656

We have performed in the NA3 experiment the study of high mass dimuon production by a hadronic unseparated beam on hydrogen and platinum targets. The comparison of the production cross‐section for proton and antiproton together with the differential cross‐section dσ/dx allows us to compare the data with a production mechanism involving quark‐antiquark and gluon‐gluon interactions. The cosΘ* distribution of the same J/ψ data have also been analysed and results will be presented. Finally we have observed T production from 150 GeV/c incident pions.

4 data tables

No description provided.

No description provided.

No description provided.

More…

A Measurement of Elastic $J / \psi$ Photoproduction Cross Section at Fermilab E687

The E687 collaboration Frabetti, P.L. ; Paolone, V.S. ; Yager, P.M. ; et al.
Phys.Lett.B 316 (1993) 197-206, 1993.
Inspire Record 359356 DOI 10.17182/hepdata.28834

Measurements of elastic photoproduction cross sections for the J / ψ meson from 100 GeV to 375 GeV are presented. The results indicate that the cross section increases slowly in this range. The shape of the energy dependence agrees well with the photon-gluon fusion model prediction.

3 data tables

Data supplied by V. Paolone.

Cross section data using Bethe-Heitler event normalization.

Cross section data using the Beam Gamma Monitor normalization.


Strangeness enhancement in central S + S collisions at 200-GeV/nucleon.

The NA35 collaboration Baechler, J. ; Bartke, J. ; Bialkowska, H. ; et al.
Nucl.Phys.A 525 (1991) 221C-226C, 1991.
Inspire Record 328899 DOI 10.17182/hepdata.36820

None

4 data tables

No description provided.

No description provided.

No description provided.

More…

The Gottfried sum from the ratio F2(n) / F2(p)

The New Muon collaboration Amaudruz, P. ; Arneodo, M. ; Arvidson, A. ; et al.
Phys.Rev.Lett. 66 (1991) 2712-2715, 1991.
Inspire Record 313931 DOI 10.17182/hepdata.19908

Experimental results obtained at the CERN Super Proton Synchrotron on the structure-function ratio F2n/F2p in the kinematic range 0.004<x<0.8 and 0.4<Q2<190 GeV2, together with the structure function F2d determined from a fit to published data, are used to derive the difference F2p(x)-F2n(x). The value of the Gottfried sum F(F2p-F2n)dx/x=0.240±0.016 is below the quark-parton-model expectation of 1/3.

1 data table

No description provided.