Study of the process $e^+e^-\to\eta\gamma$ in the center-of-mass energy range 1.07--2.00 GeV

Achasov, M.N. ; Aulchenko, V.M. ; Barnyakov, A.Yu. ; et al.
Phys.Rev.D 90 (2014) 032002, 2014.
Inspire Record 1275333 DOI 10.17182/hepdata.62279

The $e^+e^-\to\eta\gamma$ cross section has been measured in the center-of-mass energy range 1.07--2.00 GeV using the decay mode $\eta\to 3\pi^0$, $\pi^0\to \gamma\gamma$. The analysis is based on 36 pb$^{-1}$ of integrated luminosity collected with the SND detector at the VEPP-2000 $e^+e^-$ collider. The measured cross section of about 35 pb at 1.5 GeV is explained by decays of the $\rho(1450)$ and $\phi(1680)$ resonances.

2 data tables

The energy interval and E+ E- --> ETA GAMMA Born cross section(SIG). The first error in the cross section is statistical, the second systematic. For the last two energy intervals, the upper limits at the 90 PCT confidence level are listed for the cross section.

The fitted values of the cross sections at the resonance peaks.


Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev.D 82 (2010) 034001, 2010.
Inspire Record 849042 DOI 10.17182/hepdata.55734

We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT > 0.5 GeV/c, pseudorapidity |\eta| < 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of \eta-\phi space; toward, away, and transverse, where \phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.

15 data tables

Drell-Yan events. Charged particle density in the toward, transverse and away regions.

Drell-Yan events. Charged particle density in the transMAX, transMIN and transDIF regions.

Drell-Yan events. Charged particle PTsum density in the toward, transverse and away regions.

More…