Precise Measurement of the $e^+ e^- \to \pi^+\pi^- (\gamma)$ Cross Section with the Initial-State Radiation Method at BABAR

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 86 (2012) 032013, 2012.
Inspire Record 1114155 DOI 10.17182/hepdata.115140

A precise measurement of the cross section of the process $e^+e^-\to\pi^+\pi^-(\gamma)$ from threshold to an energy of 3GeV is obtained with the initial-state radiation (ISR) method using 232fb$^{-1}$ of data collected with the BaBar detector at $e^+e^-$ center-of-mass energies near 10.6GeV. The ISR luminosity is determined from a study of the leptonic process $e^+e^-\to\mu^+\mu^-(\gamma)\gamma_{\rm ISR}$, which is found to agree with the next-to-leading-order QED prediction to within 1.1%. The cross section for the process $e^+e^-\to\pi^+\pi^-(\gamma)$ is obtained with a systematic uncertainty of 0.5% in the dominant $\rho$ resonance region. The leading-order hadronic contribution to the muon magnetic anomaly calculated using the measured $\pi\pi$ cross section from threshold to 1.8GeV is $(514.1 \pm 2.2({\rm stat}) \pm 3.1({\rm syst}))\times 10^{-10}$.

3 data tables

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ The cross section values (nb) for 337 CM energy intervals (GeV) from 0.3 to 3 GeV. The cross section is bare (excluding vacuum polarization) and includes the emission of final state photons. ***WARNING*** The quoted errors are from the diagonal elements of the statistical covariance matrix (reported the Table titled "Bare cross-section statistical covariance") and added quadratically with the systematic uncertainties (reported in the Table titled "Bare cross-section systematic uncertainties"). These errors can be used when plotting the results as they are representative of the precision achieved. However, any calculation involving the cross section over some energy range MUST use, to be meaningful, the full statistical covariance matrix and the proper correlations of the systematic uncertainties. ***WARNING***

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ systematic uncertainties contributions and total systematic uncertainties, for 337 CM energy intervals (GeV), from 0.3 to 3 GeV. All systematics contributions are each 100% correlated in all energy bins.

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ statistical covariance matrix, for 337x337 CM energy intervals (GeV), from 0.3 to 3 GeV.


Fast neutron production (p(n) >= 1-GeV/c) in p p and p C-12 interactions at p = 4.2-GeV/c and 10-GeV/c.

Bekmirzaev, R.N. ; Grishin, V.G. ; Grishina, O.V. ; et al.
Sov.J.Nucl.Phys. 49 (1989) 637-639, 1989.
Inspire Record 253442 DOI 10.17182/hepdata.9459

None

5 data tables

No description provided.

No description provided.

No description provided.

More…

Bubble Chamber Study of Photoproduction by 2.8-GeV and 4.7-GeV Polarized Photons. 1. Cross-Section Determinations and Production of rho0 and Delta++ in the Reaction gamma p --> p pi+ pi-

Ballam, Joseph ; Chadwick, G.B. ; Gearhart, R. ; et al.
Phys.Rev.D 5 (1972) 545, 1972.
Inspire Record 67165 DOI 10.17182/hepdata.3635

Photoproduction is studied at 2.8 and 4.7 GeV using a linearly polarized monoenergetic photon beam in a hydrogen bubble chamber. We discuss the experimental procedure, the determination of channel cross sections, and the analysis of the channel γp→pπ+π−. A model-independent analysis of the ρ0-decay angular distribution allows us to measure nine independent density-matrix elements. From these we find that the reaction γp→pρ0 proceeds almost completely through natural parity exchange for squared momentum transfers |t|<1 GeV2 and that the ρ production mechanism is consistent with s-channel c.m. helicity conservation for |t|<0.4 GeV2. A cross section for the production of π+π− pairs in the s-channel c.m. helicity-conserving p-wave state is determined. The ρ mass shape is studied as a function of momentum transfer and is found to be inconsistent with a t-independent Ross-Stodolsky factor. Using a t-dependent parametrization of the ρ0 mass shape we derive a phenomenological ρ0 cross section. We compare our phenomenological ρ0 cross section with other experiments and find good agreement for 0.05<|t|<1 GeV2. We discuss the discrepancies in the various determinations of the forward differential cross section. We study models for ρ0 photoproduction and find that the Söding model best describes the data. Using the Söding model we determine a ρ0 cross section. We determine cross sections and nine density-matrix elements for γp→Δ++π−. The parity asymmetry for Δ++ production is incompatible with simple one-pion exchange. We compare Δ++ production with models.

20 data tables

FROM QUOTED TOPOLOGICAL CROSS SECTIONS. 1.44 GEV CROSS SECTION PUBLISHED PREVIOUSLY.

No description provided.

NO TMIN CORRECTION HAS BEEN MADE.

More…

pi + /- p Backward Scattering Between 1.5 and 3.0 BeV/c

Carroll, A.S. ; Fischer, J. ; Lundby, A. ; et al.
Phys.Rev.Lett. 20 (1968) 607-609, 1968.
Inspire Record 54465 DOI 10.17182/hepdata.897

None

30 data tables

No description provided.

No description provided.

No description provided.

More…

Forward $\pi^-p$ charge exchange scattering between 0.8 and 1.9 GeV

Borgeaud, P. ; Bruneton, C. ; Ducros, Y. ; et al.
Phys.Lett. 10 (1964) 134-137, 1964.
Inspire Record 1400914 DOI 10.17182/hepdata.31224

None

15 data tables

No description provided.

No description provided.

No description provided.

More…

Five-pion final state in p p annihilations at 0.70 to 1.1 GeV/c

Burns, R.R. ; Condon, P.E. ; Donahue, J. ; et al.
Nucl.Phys.B 85 (1975) 337-353, 1975.
Inspire Record 1392678 DOI 10.17182/hepdata.32116

Results are reported on the reaction p p → π + π + π − π − π 0 at six lab momenta spanning the region from 0.686 to 1.098 GeV/ c . The cross section for this process drops from 20.3 ± 1.2 mb at 0.686 GeV/ c to 13 1.0 mb at 1.098 GeV/ c . Resonance production is determined by means of a model which includes Bose symmetrization, Breit-Wigner amplitudes and Bose-Einstein correlations for the like-charged pion pairs in the nonresonant part of the amplitude. The likelihood fit to the resonance channels yields about 0.8% ηππ , 12% ϱ ± πππ , 2% f πππ , 8% ω ππ , 22% ϱ ± ϱ 0 π , 13% ωϱ 0 and 9% ω f with errors on the order of a few percent. Several percent A 1 ± ππ and X(1440) π were also needed to obtain good fits. The ϱ 0 πππ and ϱ 0 ϱ 0 π channels as well as A 2 ππ and A 1 0 ππ are consistent with zero. Reasonable fits to the mass distributions are obtained. Production angular distributions are found to be essentially uniform. The angular correlations between pion pairs are approximately fit by the simple model of resonance production with Bose symmetrization.

2 data tables

Axis error includes +- 0.0/0.0 contribution.

Axis error includes +- 0.0/0.0 contribution.


Analysis of $\bar{p}p\to K^+ K^- \pi^+ \pi^-$ around 1 GeV/c

Price, L.R. ; Burns, R.R. ; Condon, P.E. ; et al.
Nucl.Phys.B 85 (1975) 326-336, 1975.
Inspire Record 1392681 DOI 10.17182/hepdata.32088

Approximately 100 000 four-prong antiproton annihilations in hydrogen were measured. A clean, unbiased sample of 842 K + K − π + π − events was obtained. This reaction is dominated by K ∗ (∼45%) and ϱ 0 (∼20%) production, with smaller amounts of A 2 0 (∼15%) and ϕ (∼5%) production. 25% of the reactions involved double resonance production. No significant three-body resonance production is observed.

1 data table

ERRORS INCLUDE SYSTEMATICS.


The transverse and longitudinal cross sections for electroproduction of pions near the Δ(1236)-isobar

Bartel, W. ; Dudelzak, B. ; Krehbiel, H. ; et al.
Phys.Lett.B 27 (1968) 660-662, 1968.
Inspire Record 1389642 DOI 10.17182/hepdata.29204

The reaction e + p → e ′+ N ∗ was studied for four momentum transfers up to 2.34 (GeV/ c ) 2 in the region of the 1236 MeV isobar. An analysis of the data in terms of the cross sections σ T and σ L for the absorption of transverse and longitudinal photons is given for invariant masses of the final pion nucleon system W =1.220 GeV and W =1.350 GeV.

3 data tables

Total errors are presented.

Total errors are presented.

Total errors are presented.


Observation of the $\phi(1680)$ and the Y(2175) in $e^+ e^- \to \phi\pi^+\pi^-$

The Belle collaboration Shen, C.P. ; Yuan, C.Z. ; Wang, P. ; et al.
Phys.Rev.D 80 (2009) 031101, 2009.
Inspire Record 809630 DOI 10.17182/hepdata.52399

The cross sections for $e^+ e^- \to \phi\pi^+\pi^-$ and $e^+ e^- \to \phi \fzero$ are measured from threshold to $\sqrt{s}=3.0$ $\hbox{GeV}$ using initial state radiation. The analysis is based on a data sample of 673 fb$^{-1}$ collected on and below the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider. First measurements are reported for the resonance parameters of the $\phi(1680)$ in the $\phi\pi^+\pi^-$ mode: $m=(1689\pm 7\pm 10)$ MeV/$c^2$ and $\Gamma=(211\pm 14\pm 19)$ MeV/$c^2$. A structure at $\sqrt{s}=2.1 \hbox{GeV}/c^2$, corresponding to the so called Y(2175), is observed/ its mass and width are determined to be $2079\pm13^{+79}_{-28}$ MeV/$c^2$ and $192\pm23^{+25}_{-61} \hbox{MeV}/c^2$, respectively.

2 data tables

Measured E+ E- --> PHI PI+ PI- cross section.

Measured E+ E- --> PHI F0 cross section.


Proton Proton Elastic Scattering from 150-MeV to 515-MeV

Bugg, D.V. ; Edgington, J.A. ; Amsler, Claude ; et al.
J.Phys.G 4 (1978) 1025, 1978.
Inspire Record 123232 DOI 10.17182/hepdata.38563

The parameters D, R, R' and P for pp elastic scattering have been measured in the centre-of-mass angular range 13 degrees to 58 degrees with an accuracy of about +or-0.02 at 209, 324, 379, 425 and 515 MeV. These results are incorporated with earlier data into a phase-shift analysis. Phase-shifts are generally in agreement with the theoretical predictions of the Paris group, although the F-wave spin-orbit combination is rather stronger than predicted. The fitted value for the pi 0pp coupling constant in g02=14.06+or-0.65.

6 data tables

No description provided.

No description provided.

No description provided.

More…