First measurement of beam-recoil observables C(x) and C(z) in hyperon photoproduction.

The CLAS collaboration Bradford, R.K. ; Schumacher, R.A. ; Adams, G. ; et al.
Phys.Rev.C 75 (2007) 035205, 2007.
Inspire Record 732402 DOI 10.17182/hepdata.31496

Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions $\vec\gamma + p \to K^+ + \vec\Lambda$ and $\vec\gamma + p \to K^+ + \vec\Sigma^0$. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies $W$ between 1.6 and 2.53 GeV, and for $-0.85<\cos\theta_{K^+}^{c.m.}< +0.95$. For the $\Lambda$, the polarization transfer coefficient along the photon momentum axis, $C_z$, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, $C_x$, is smaller than $C_z$ by a roughly constant difference of unity. Most significantly, the {\it total} $\Lambda$ polarization vector, including the induced polarization $P$, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the $\Sigma^0$ this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.

34 data tables

Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.032 GeV and W = 1.679 GeV.

Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.132 GeV and W = 1.734 GeV.

Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.232 GeV and W = 1.787 GeV.

More…

n p elastic spin transfer measurements at 485-MeV and 635-MeV

McNaughton, K.H. ; Ambrose, D.A. ; Coffey, P. ; et al.
Phys.Rev.C 46 (1992) 47-51, 1992.
Inspire Record 342389 DOI 10.17182/hepdata.26097

We have measured the spin-transfer parameters KLL, KSL, KLS, and KSS at 635 MeV from 50° to 178° c.m. and at 485 MeV from 74° to 176° c.m. These new data have a significant impact on the phase-shift analyses. There are now sufficient data near these energies to overdetermine the elastic nucleon-nucleon amplitudes.

2 data tables

Spin transfer parameters from np elastic scattering at 635 MeV. There is an additional overall normalisation of 2 PCT.

Spin transfer parameters from np elastic scattering at 485 MeV. There is an additional overall normalisation of 2 PCT.


Measurement of the longitudinal spin dependent neutron - proton total cross-section difference Delta sigma-L (n p) between 500-MeV - 800-MeV

Beddo, M. ; Burleson, G. ; Faucett, J.A. ; et al.
Phys.Rev.D 50 (1994) 104-123, 1994.
Inspire Record 37179 DOI 10.17182/hepdata.22460

A measurement of ΔσL(np), the difference between neutron-proton total cross sections for pure longitudinal spin states, is described. Data were taken at LAMPF for five neutron beam kinetic energies: 484, 568, 634, 720, and 788 MeV. The statistical errors are in the range of 0.64–1.35 mb. Various sources of systematic effects were investigated and are described. Overall systematic errors are estimated to be on the order of 0.5 mb and include an estimate for the uncertainty in the neutron beam polarization. The ΔσL results are consistent with previous results from PSI and Saclay. These data, when combined with other results and fitted to a Breit-Wigner curve, are consistent with an elastic I=0 resonance with mass 2214±15 (stat) ±6 (syst) MeV and width 75±21±12 MeV. Because of a lack of ΔσT(np) data between 500 and 800 MeV, it is not possible to differentiate between a singlet or coupled-triplet partial wave being responsible.

2 data tables

No description provided.

The (I=0) part of SIG(NAME=CLL) after subtraction of the p p data, (I=1) part.


Neutron - proton elastic scattering spin - spin correlation parameter. Measurements between 500 and 800 - MeV. 3. Mixtures of C(ss), C(ls), C(ll), and C(nn).

Carlson, V. ; Garnett, R. ; Hill, D. ; et al.
Phys.Rev.D 53 (1996) 3506-3533, 1996.
Inspire Record 404963 DOI 10.17182/hepdata.50927

Measurements are presented for several mixtures of the spin observables CSS,CSL=CLS, CLL, and CNN for neutron-proton elastic scattering. These data were obtained with a free polarized neutron beam, a polarized proton target, and a large magnetic spectrometer for the outgoing proton. The neutron beam kinetic energies were 484, 567, 634, 720, and 788 MeV. Combining these results with earlier measurements allows the determination of the pure spin observables CSS, CLS, and CLL at 484, 634, and 788 MeV for c.m. angles 25°≤θc.m.≤180° and at 720 MeV for 35°≤θc.m.≤80°. These data make a significant contribution to the knowledge of the isospin-0 nucleon-nucleon scattering amplitudes. © 1996 The American Physical Society.

19 data tables

Results for the pure spin observables. Statistical errors only. (Data for CSS and CNN at (172.5 to 177.5) and (167.5 to 172.5) degrees are uncertain because of the rapid angular dependence and possible errors in angle, and may be omitted from phase shift analyses.) The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.

Results for the pure spin observables. Statistical errors only. (Data for CSS and CNN at (172.5 to 177.5) and (167.5 to 172.5) degrees are uncertain because of the rapid angular dependence and possible errors in angle, and may be omitted from phase shift analyses.) The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.

Results for the pure spin observables. Statistical errors only. The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.

More…

Neutron - proton elastic scattering spin spin correlation parameter measurements between 500-MeV and 800-MeV. 2. C(SS) and C(LS) at forward cm angles

Shima, T. ; Hill, D. ; Johnson, K.F. ; et al.
Phys.Rev.D 47 (1993) 29-45, 1993.
Inspire Record 335383 DOI 10.17182/hepdata.22585

Results are presented for the spin-spin correlation parameters CSS and CLS for free np elastic scattering at neutron beam kinetic energies of 484, 634, 720, and 788 MeV and c.m. angles between 25° and 80°. The measurements were performed with a polarized neutron beam and a polarized proton target. These are the first measurements of this type to be reported in the forward angular region with a free polarized neutron beam. The observables CSS and CLS are both small at all energies, except for CLS at 788 MeV, which is larger than phase-shift analysis predictions by more than one standard deviation for most of the measured points.

8 data tables

No description provided.

No description provided.

No description provided.

More…

Neutron proton elastic scattering spin spin correlation parameter measurements between 500-MeV and 800-Mev: 1. C(SL) and C(LL) at backward c.m. angles

Ditzler, W.R. ; Hill, D. ; Hoftiezer, J. ; et al.
Phys.Rev.D 46 (1992) 2792-2830, 1992.
Inspire Record 334079 DOI 10.17182/hepdata.22741

Final results are presented for the spin-spin correlation parameters CSL and CLL for np elastic scattering with a polarized neutron beam incident on a polarized proton target. The beam kinetic energies are 484, 634, and 788 MeV, and the c.m. angular range is 80°-180°. These data will contribute significantly to the determination of the isospin-0 amplitudes in the energy range from 500 to 800 MeV.

6 data tables

Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.

Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.

Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.

More…

Energy dependence of the neutron proton total cross-section differences Delta (sigma-T) and Delta (sigma-L) between 0.31-GeV and 1.1-GeV

Fontaine, J.M. ; Kunne, F. ; Bystricky, J. ; et al.
Nucl.Phys.B 358 (1991) 297-310, 1991.
Inspire Record 320446 DOI 10.17182/hepdata.33013

Final results for total cross section differences Δσ T and Δσ L measured with a polarized neutron beam transmitted through a polarized proton target are presented. Measurements were carried out at SATURNE II, at 11 energies between 0.63 and 1.1 GeV for Δσ T and at 9 energies between 0.312 and 1.1 GeV for Δσ L . The results are compared with measurements at PSI and LAMPF as well as with Δσ L data points deduced from p-d and p-p transmission experiments at the ANL-ZGS. The present results together with the corresponding pp data allow to determine two of the three imaginary parts of forward scattering amplitudes for isospin I = 0.

4 data tables

Measurements of the tranverse cross section differences.

Measurements of the tranverse cross section differences.

Measurement of the longitudinal cross section difference.

More…

Spin transfer measurements of the pi d (polarized) ---> p p (polarized) reaction spanning the Delta resonance

Feltham, A. ; Trelle, R.P. ; Jones, G. ; et al.
Phys.Rev.Lett. 66 (1991) 2573-2576, 1991.
Inspire Record 315151 DOI 10.17182/hepdata.19906

The first spin-transfer observables for the πd→pp reaction have been measured at a number of energies spanning the Δ resonance in this system. These parameters correspond to KSL and KSS of the pp→dπ reaction for incident proton energies ranging from 600 to 800 MeV. Such data can provide an important constraint on the determination of the partial-wave amplitudes describing this fundamental reaction. The discrepancies between our data, theoretical predictions, and values calculated from published partial-wave amplitudes demonstrate the need for further work in this area.

2 data tables

No description provided.

No description provided.


Measurement of a Mixed Spin Spin Correlation Parameter for $n p$ Elastic Scattering

Garnett, R. ; Rawool, M. ; Carlson, V. ; et al.
Phys.Rev.D 40 (1989) 1708, 1989.
Inspire Record 25430 DOI 10.17182/hepdata.23054

The mixed spin-spin correlation parameter Cσσ≈0.5CSS−0.8CSL for np elastic scattering was measured for incident-neutron-beam kinetic energies of 484, 634, and 788 MeV over the center-of-mass angular range 75°-180°. These Cσσ data are important for determining the I=0 nucleon-nucleon amplitudes and provide strong constraints on the phase-shift solutions. It was found that the P11, S13, and D13 isospin-0 partial waves are most strongly affected.

3 data tables

Mixed spin parameter POL.POL(NAME=CXX) is given by 0.475 * CSS + 0.088 CNN + 0.1390 CLL - 0.744 CSL.

Mixed spin parameter POL.POL(NAME=CXX) is given by 0.506 * CSS + 0.064 CNN + 0.163 CLL - 0.809 CSL.

Mixed spin parameter POL.POL(NAME=CXX) is given by 0.528 * CSS + 0.050 CNN + 0.178 CLL - 0.824 CSL.


Measurement of C(ll) and C(sl) in $N P$ Elastic Scattering at 484-{MeV} and 634-{MeV}

Burleson, G.R. ; Faucett, J.A. ; Fontenla, C.A. ; et al.
Phys.Rev.Lett. 59 (1987) 1645, 1987.
Inspire Record 21907 DOI 10.17182/hepdata.3247

The spin-spin correlation parameters CLL=(L,L;0,0)=ALL and CSL=(S,L;0,0)=ASL for np elastic scattering were measured for incident polarized-neutron–beam kinetic energies of 484 and 634 MeV over the center-of-mass angles from ≃80° to 180°. The data are important for determining the I=0 nucleon-nucleon amplitudes. These results are compared with phase-shift calculations.

5 data tables

No description provided.

No description provided.

No description provided.

More…