Excitation functions of the analyzing power in p p(pol.) scattering from 0.45-GeV to 2.5-GeV

The EDDA collaboration Altmeier, M. ; Bauer, F. ; Bisplinghoff, J. ; et al.
Phys.Rev.Lett. 85 (2000) 1819-1822, 2000.
Inspire Record 537773 DOI 10.17182/hepdata.19490

Excitation functions AN(pp,Θc.m.) of the analyzing power in pp→ elastic scattering have been measured with a polarized atomic hydrogen target for projectile momenta pp between 1000 and 3300 MeV/ c. The experiment was performed for scattering angles 30°≤Θc.m.≤90° using the recirculating beam of the proton storage ring COSY during acceleration. The resulting excitation functions and angular distributions of high internal consistency have significant impact on the recent phase shift solution SAID SP99, in particular, on the spin triplet phase shifts between 1000 and 1800 MeV, and demonstrate the limited predictive power of single-energy phase shift solutions at these energies.

26 data tables

No description provided.

No description provided.

No description provided.

More…

Proton-Proton Elastic Scattering Excitation Functions at Intermediate Energies

Albers, D. ; Bisplinghoff, J. ; Bollmann, R. ; et al.
Phys.Rev.Lett. 78 (1997) 1652-1655, 1997.
Inspire Record 454620 DOI 10.17182/hepdata.19581

Excitation functions of proton-proton elastic scattering cross sections have been measured in narrow steps for projectile momenta pp (energies Tp) from 1100 to 3300MeV/c (500 to 2500 MeV) in the angular range 35°≤Θc.m.≤90° with a detector providing ΔΘc.m.≈1.4° resolution. Measurements have been performed continuously during projectile acceleration in the cooler synchrotron COSY with an internal CH2 fiber target, taking particular care to monitor luminosity as a function of Tp. The advantages of this experimental technique are demonstrated, and the excitation functions obtained are compared to existing cross section data. No evidence for narrow structures was found.

16 data tables

No description provided.

No description provided.

No description provided.

More…

A Measurement of the Energy Dependence of Elastic $\pi p$ and $p p$ Scattering at Large Angles

Jenkins, K.A. ; Price, L.E. ; Klem, R. ; et al.
Phys.Rev.Lett. 40 (1978) 425, 1978.
Inspire Record 6233 DOI 10.17182/hepdata.3359

We have measured π±p and pp elastic differential cross sections in the range |cosθc.m.|<0.35 for incident momenta from 2 to 9.7 GeV/c for π−p and pp and from 2 to 6.3 GeV/c for π+p. We find that the fixed-c.m.-angle πp differential cross sections cannot be described as simple functions of s. The data are compared to the energy and angular dependence predicted by the constituent model of Gunion, Brodsky, and Blankenbecler.

56 data tables

No description provided.

No description provided.

No description provided.

More…

Systematic study of pi+- p, k+- p, p p, and anti-p p forward elastic scattering from 3 to 6 gev/c

Ambats, I. ; Ayres, D.S. ; Diebold, R. ; et al.
Phys.Rev.D 9 (1974) 1179-1209, 1974.
Inspire Record 92992 DOI 10.17182/hepdata.3409

Measurements of π±p, K±p, pp, and p¯p elastic scattering are presented for incident momenta of 3, 3.65, 5, and 6 GeVc and momentum transfers typically 0.03 to 1.8 GeV2. The angle and momentum of the scattered particle were measured with the Argonne Effective Mass Spectrometer for 300 000 events, yielding 930 cross-section values with an uncertainty in absolute normalization of ±4%. Only the K+ and proton data show any significant change in slope of the forward diffraction peak with incident momentum. The particle-antiparticle crossover positions are consistent with no energy dependence, average values being 0.14 ± 0.03, 0.190 ± 0.006, and 0.162 ± 0.004 GeV2 for π' s, K' s, and protons, respectively; these errors reflect both statistics and the ±1.5% uncertainty in particle-antiparticle relative normalization. Differences between particle and antiparticle cross sections isolate interference terms between amplitudes of opposite C parity in the t channel; these differences indicate that the imaginary part of the odd-C nonflip-helicity amplitude has a J0(r(−t)12) structure for −t<0.8 GeV2, as predicted by strong absorption models. The cross-section differences for K± and proton-antiproton are in qualitative agreement with the predictions of ω universality, the agreement improving with increasing energy. The corresponding quark-model predictions relating the π± and K± differences failed by more than a factor of 2. We have combined our π± cross sections with other data to better determine the πN amplitudes in a model-independent way; results of this analysis are presented.

18 data tables

No description provided.

No description provided.

No description provided.

More…