PION-PROTON ELASTIC SCATTERING FROM 2.3-6.0 BEV/C WITH SPECIAL REFERENCE TO THE BACKWARD DIRECTION

Williams, David Gerald ;
PhD Thesis, Michigan U., 1966.
Inspire Record 1407538 DOI 10.17182/hepdata.70292

None

12 data tables

No description provided.

No description provided.

No description provided.

More…

Summary data on elastic $pp$ and $pd$ scattering at small angles and the real part of the $pn$-scattering amplitude in the energy interval 1-10 BeV

Dalkhazhav, N. ; Devinski, P.A. ; Zayachki, V.I. ; et al.
Sov.J.Nucl.Phys. 8 (1969) 196-202, 1969.
Inspire Record 1392874 DOI 10.17182/hepdata.69719

None

32 data tables

RE/IM MEASUREMENTS TAKEN FROM TABLE 1 OF KIRILLOVA 65.

TABLE 1 (REF. 1 ).

RE/IM MEASUREMENTS TAKEN FROM TABLE 1 OF KIRILLOVA 65.

More…

A MEASUREMENT OF THE K0(L) p ELASTIC CROSS-SECTION FOR 3 less than or equal to p less than or equal to 13-GeV/c AND .1 less than or equal to |t| less than or equal to 1.3-GeV**2

Cittolin, S. ; Gasparini, F. ; Limentani, S. ; et al.
Nucl.Phys.B 157 (1979) 197-211, 1979.
Inspire Record 7663 DOI 10.17182/hepdata.34662

The cross section for the K L 0 p elastic scattering has been measured for the first time. The incident momentum and momentum transfer ranges are 3 ⩽ p ⩽ 13 GeV/ c , 0.1 ⩽ | t | ⩽ 1.3 GeV 2 . The results are compared to those of other experiments related to ours by isotopic spin conservation, finding agreement with some and discrepancies with others. The differential cross sections have been parametrized in the form A e bt . The coefficients show little or no dependence on energy, with A ≅ 9.8 mb · GeV −2 and b ≅ 4.7 GeV −2 . The effective linear trajectory has been determined and gives α 0 = 0.95 ± 0.15, α ′ = −0.35 ± 0.48 GeV −2 , in good agreement with dominance by pomeron exchange.

3 data tables

CROSS SECTIONS DEDUCED FROM THE 46 PCT OF EVENTS WHICH YIELD UNIQUE SOLUTIONS.

<RAW> CROSS SECTIONS DEDUCED FROM A STATISTICAL TREATMENT OF ALL EVENTS.

<SMOOTHED> CROSS SECTIONS DEDUCED FROM A STATISTICAL TREATMENT OF ALL EVENTS.


Analysing power for quasi-elastic pp scattering in carbon and for elastic pp scattering on free protons

Bystricky, J. ; Deregel, J. ; Lehar, F. ; et al.
Lett.Nuovo Cim. 40 (1984) 466-470, 1984.
Inspire Record 1388775 DOI 10.17182/hepdata.37297

The ratio of the analysing powers for quasi-elastic pp scattering in carbon and for elastic scattering on free protons was measured fromT = 0.52 to 2.8 GeV by scattering of the SATURNE II polarized proton beam on carbon and CH2. It was found to have a maximum at about 0.8 GeV. The energy dependence for quasielastic scattering on carbon had not been measured before above 1 GeV. The observed effect was not expected from simple models.

1 data table

No description provided.


Elastic scattering and polarisation in 3.0 and 3.6 GeV/c antiproton-proton collisions

Escoubès, B. ; Fedrighini, A. ; Goldschmidt-Clermont, Y. ; et al.
Phys.Lett. 5 (1963) 132-136, 1963.
Inspire Record 1389108 DOI 10.17182/hepdata.751

None

3 data tables

No description provided.

No description provided.

No description provided.


NEUTRON - PROTON ELASTIC SCATTERING FROM 2-GeV/c TO 7-GeV/c

Perl, Martin L. ; Cox, Jack ; Longo, Michael J. ; et al.
Phys.Rev.D 1 (1970) 1857, 1970.
Inspire Record 54902 DOI 10.17182/hepdata.69198

Direct measurements were made of neutron-proton elastic scattering differential cross sections at high energies. A neutron beam with a continuous momentum spectrum between 1.2 and 6.7 GeV/c was scattered off a liquid hydrogen target, and spark chambers were used to determine the neutron scattering angle and, in a proton spectrometer, to measure the momentum and scattering angle of the recoil proton. Differential cross sections are presented over the incident neutron momentum range in intervals of the order of 0.5-GeV/c wide. The cross sections have an exponential peak in the forward direction and then flatten and become isotropic about the 90° c.m. scattering angle. At larger angles, the cross sections again rise towards the expected charge-exchange peak, which was not within the range of this experiment. There is little evidence of any other structure in the cross section. Values are presented for the slope of the diffraction peak, and comparisons are made between these slopes, and the 90° c.m. cross sections, for pp and np elastic scattering. The results presented here differ from those previously reported because of an error in a Monte Carlo calculation and in the availability of improved data on the real part of the np elastic scattering amplitude. At 5 GeV/c, a direct comparison of pp and np data allows the I=0 differential cross section to be extracted. The np data have been fitted in powers of cosθc.m. for |cosθc.m.|<0.8 for each energy range.

9 data tables

No description provided.

No description provided.

No description provided.

More…

Compton scattering cross section on the proton at high momentum transfer.

The Hall A collaboration Danagoulian, A. ; Mamyan, V.H. ; Roedelbronn, M. ; et al.
Phys.Rev.Lett. 98 (2007) 152001, 2007.
Inspire Record 743383 DOI 10.17182/hepdata.31472

Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s = 5-11 and -t = 2-7 GeV2 with statistical accuracy of a few percent. The scaling power for the s-dependence of the cross section at fixed center of mass angle was found to be 8.0 +/ 0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross-section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark.

4 data tables

Cross section of proton Compton Scattering at centre of mass energy squared of 4.82 GeV.

Cross section of proton Compton Scattering at centre of mass energy squared of 6.79 GeV.

Cross section of proton Compton Scattering at centre of mass energy squared of 8.90 GeV.

More…

The p p elastic scattering analyzing power measured with the polarized beam and the unpolarized target between 1.98-GeV and 2.80-GeV.

Allgower, C.E. ; Ball, J. ; Beddo, M. ; et al.
Nucl.Phys.A 637 (1998) 231-242, 1998.
Inspire Record 478006 DOI 10.17182/hepdata.36350

A polarized proton beam extracted from SATURNE II was scattered on an unpolarized CH 2 target. The angular distribution of the beam analyzing power A oono was measured at large angles from 1.98 to 2.8 GeV and at 0.80 GeV nominal beam kinetic energy. The same observable was determined at the fixed mean laboratory angle of 13.9° in the same energy range. Both measurements are by-products of an experiment measuring the spin correlation parameter A oon .

19 data tables

Analysing power measurements at a fixed laboratory angle of 13.9 degrees.

No description provided.

No description provided.

More…

Measurements of the proton elastic form-factors for 1-GeV/c**2 <= Q**2 <= 3-GeV/C**2 at SLAC

Walker, R.C. ; Filippone, B. ; Jourdan, J. ; et al.
Phys.Rev.D 49 (1994) 5671-5689, 1994.
Inspire Record 360764 DOI 10.17182/hepdata.22469

We report measurements of the proton form factors GEp and GMp extracted from elastic scattering in the range 1≤Q2≤3 (GeV/c)2 with total uncertainties < 15% in GEp and < 3% in GMp. Comparisons are made to theoretical models, including those based on perturbative QCD, vector-meson dominance, QCD sum rules, and diquark constituents in the proton. The results for GEp are somewhat larger than indicated by most theoretical parametrizations, and the ratios of the Pauli and Dirac form factors Q2(F2pF1p) are lower in value and demonstrate a weaker Q2 dependence than those predictions. A global extraction of the elastic form factors from several experiments in the range 0.1 0.1<Q2<10 (GeV/c)2 is also presented.

6 data tables

Point-to-point systematic uncertainty is 0.5%, overall normailzation uncertainty is 1.9%.

Point-to-point systematic uncertainty is 0.5%, overall normailzation uncertainty is 1.9%.

Point-to-point systematic uncertainty is 0.5%, overall normailzation uncertainty is 1.9%.

More…

Measurements of the electric and magnetic form-factors of the proton from Q**2 = 1.75-GeV/c**2 to 8.83-GeV/c**2

Bosted, Peter E. ; Clogher, L. ; Lung, A. ; et al.
Phys.Rev.Lett. 68 (1992) 3841-3844, 1992.
Inspire Record 332962 DOI 10.17182/hepdata.19849

The proton elastic electric and magnetic form factors, GEp(Q2) and GMp(Q2), have been separately measured in the range Q2=1.75 to 8.83 (GeV/c)2, more than doubling the Q2 range of previous data. Scaled by the dipole fit, GD(Q2), the results for GMp(Q2)/μpGD(Q2) decrease smoothly from 1.05 to 0.91, while GEp(Q2)/GD(Q2) is consistent with unity. Comparisons are made to QCD sum rule, diquark, constitutent quark, and vector meson dominance models, none of which agree with all of the new data. The ratio Q2F2/F1 approaches a constant value for Q2>3 (GeV/c)2.

2 data tables

Magnetic form factors.

Electric form factors.