Measurements of the proton elastic form-factors for 1-GeV/c**2 <= Q**2 <= 3-GeV/C**2 at SLAC

Walker, R.C. ; Filippone, B. ; Jourdan, J. ; et al.
Phys.Rev.D 49 (1994) 5671-5689, 1994.
Inspire Record 360764 DOI 10.17182/hepdata.22469

We report measurements of the proton form factors GEp and GMp extracted from elastic scattering in the range 1≤Q2≤3 (GeV/c)2 with total uncertainties < 15% in GEp and < 3% in GMp. Comparisons are made to theoretical models, including those based on perturbative QCD, vector-meson dominance, QCD sum rules, and diquark constituents in the proton. The results for GEp are somewhat larger than indicated by most theoretical parametrizations, and the ratios of the Pauli and Dirac form factors Q2(F2pF1p) are lower in value and demonstrate a weaker Q2 dependence than those predictions. A global extraction of the elastic form factors from several experiments in the range 0.1 0.1<Q2<10 (GeV/c)2 is also presented.

6 data tables

Point-to-point systematic uncertainty is 0.5%, overall normailzation uncertainty is 1.9%.

Point-to-point systematic uncertainty is 0.5%, overall normailzation uncertainty is 1.9%.

Point-to-point systematic uncertainty is 0.5%, overall normailzation uncertainty is 1.9%.

More…

Precision Measurements of the Anti-proton - Proton Elastic Scattering Cross-section at 90-degrees in the Incident Momentum Range Between 3.5-{GeV}/$c$ and 5.7-{GeV}/$c$

The R704 collaboration Baglin, C. ; Baird, S. ; Bassompierre, G. ; et al.
Phys.Lett.B 225 (1989) 296-300, 1989.
Inspire Record 278760 DOI 10.17182/hepdata.29802

The high antiproton-proton luminosity obtained by using a target system consisting of a hydrogen gas-jet crossing a coasting beam of cooled antiproton circulating in one of the rings of CERN's ISR provides the possibility to measure low cross section reactions with very high precision. We present measurements of the antiproton-proton elastic cross section at 90° CM at incident momenta between 3.5 GeV/ c and 5.7 GeV/ c . The precision of these measurements is much higher than previously reported results. The data show that the cross section of this reaction decreases faster than s −12 over this momentum range.

2 data tables

No description provided.

No description provided.


Anti-p-p backward elastic scattering from 0.7 to 2.16 gev/c

Yoh, J.K. ; Barish, B.C. ; Nicholson, H. ; et al.
Phys.Rev.Lett. 23 (1969) 506-510, 1969.
Inspire Record 56393 DOI 10.17182/hepdata.3399

Elastic scattering of p¯ on p has been studied for cosθc.m. between -0.88 and -1.0 and Plab(p¯) between 0.70 and 2.16 GeV/c. The momentum dependence of the cross section shows a sharp dip at 0.9 GeV/c and a broad peaking around 1.4 GeV/c. The possibility of the peak resulting from direct formation of boson resonances has been studied. Alternatively, a diffraction model agrees qualitatively with our data and other elastic data at different angles.

7 data tables

'1'. '2'. '3'.

No description provided.

No description provided.

More…

$\pi^+ p$ Backward Elastic Scattering from 2-GeV/c to 6-GeV/c

Lennox, Arlene J. ; Baker, W.F. ; Eartly, David P. ; et al.
Phys.Rev.D 11 (1975) 1777, 1975.
Inspire Record 90923 DOI 10.17182/hepdata.24918

The backward angular distributions obtained in an experiment at the Zero Gradient Synchrotron of Argonne National Laboratory were used to systematically study the energy dependence of the 180° differential cross section for π+p elastic scattering in the center-of-mass energy region from 2159 to 3487 MeV. At each of 38 incident pion momenta between 2.0 and 6.0 GeV/c, a focusing spectrometer and scintillation counter hodoscopes were used to obtain differential cross sections for typically five pion scattering angles from 141° to 173° in the laboratory. Values for dσdΩ at 180° were then obtained by extrapolation. A resonance model and an interference model were used to perform fits to the energy dependence of dσdΩ (180°). Both models led to good fits to our data and yielded values for the masses, widths, parities, and the product of spin and elasticity for the Δ(2200), Δ(2420), Δ(2850), and Δ(3230) resonances. Our data confirm the existence of the Δ(3230) and require the negative-parity Δ(2200).

39 data tables

No description provided.

No description provided.

No description provided.

More…

Elastic Scattering and Single Meson Production in Proton-Proton Collisions at 2.85 Bev

Smith, G.A. ; Courant, H. ; Fowler, E.C. ; et al.
Phys.Rev. 123 (1961) 2160-2167, 1961.
Inspire Record 47571 DOI 10.17182/hepdata.734

The Brookhaven National Laboratory twenty-inch liquid hydrogen bubble chamber was exposed to a monoenergetic beam of 2.85-Bev protons, elastically scattered from a carbon target in the internal beam of the Cosmotron. All two-prong events, excluding strange particle events, have been studied by the Yale High-Energy Group. The remaining interactions have been studied by the Brookhaven Bubble Chamber Group. Elastic scattering was found to be mostly pure diffraction scattering at center-of-mass angles up to about thirty-five degrees. Some phase shift and/or tapering of the proton edge was required to fit the data at larger angles. No polarization effects in the proton-carbon scattering were observed using hydrogen as an analyzer of polarized protons. Nucleonic isobar formation in the T=32, J=32 state was found to account for a large part of single pion production. High-orbital angular-momentum states were found to be greatly favored in single pion production. The isobar model of Lindenbaum and Sternheimer gave good agreement with the observed nucleon and pion energy spectra. No polarization or alignment effects were observed for the isobar assumed in this model.

3 data tables

No description provided.

No description provided.