Version 3
Search for W$\gamma$ resonances in proton-proton collisions at $\sqrt{s} =$ 13 TeV using hadronic decays of Lorentz-boosted W bosons

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 826 (2022) 136888, 2022.
Inspire Record 1869502 DOI 10.17182/hepdata.106162

A search for W$\gamma$ resonances in the mass range between 0.7 and 6.0 TeV is presented. The W boson is reconstructed via its hadronic decays, with the final-state products forming a single large-radius jet, owing to a high Lorentz boost of the W boson. The search is based on proton-proton collision data at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$, collected with the CMS detector at the LHC in 2016-2018. The W$\gamma$ mass spectrum is parameterized with a smoothly falling background function and examined for the presence of resonance-like signals. No significant excess above the predicted background is observed. Model-specific upper limits at 95% confidence level on the product of the cross section and branching fraction to the W$\gamma$ channel are set. Limits for narrow resonances and for resonances with an intrinsic width equal to 5% of their mass, for spin-0 and spin-1 hypotheses, range between 0.17 fb at 6.0 TeV and 55 fb at 0.7 TeV. These are the most restrictive limits to date on the existence of such resonances over a large range of probed masses. In specific heavy scalar (vector) triplet benchmark models, narrow resonances with masses between 0.75 (1.15) and 1.40 (1.36) TeV are excluded for a range of model parameters. Model-independent limits on the product of the cross section, signal acceptance, and branching fraction to the W$\gamma$ channel are set for minimum W$\gamma$ mass thresholds between 1.5 and 8.0 TeV.

10 data tables

Fitted 4th order polynomials to the signal acceptance for narrow and broad, scalar and vector Wgamma resonances. This quantity is defined as the ratio between the number of signal events falling within the analysis acceptance at the generator level to the number of signal events generated. The fitting function is $ A = p0 + p1*m + p2*m^2 + p3*m^3 + p4*m^4$, where $ A$ is the acceptance and m is the signal mass.

Fitted 4th order polynomials to the product of the signal efficiency and acceptance for narrow and broad, scalar and vector Wgamma resonances. This quantity is defined as the ratio between the number of signal events passing full analysis cuts to the number of signal events generated. The fitting function is $ A \epsilon = p0 + p1*m + p2*m^2 + p3*m^3 + p4*m^4$, where $ A \epsilon$ is the product of the signal efficiency and acceptance, m is the signal mass.

W tagging efficiency, averaged for different spin and width hypotheses. The Standard deviation shown below is the standard deviation between the W tagging efficiencies for different spin and width hypotheses.

More…

Search for new physics in high-mass diphoton events from proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-22-024, 2024.
Inspire Record 2787227 DOI 10.17182/hepdata.150677

Results are presented from a search for new physics in high-mass diphoton events from proton-proton collisions at $\sqrt{s}$ = 13 TeV. The data set was collected in 2016-2018 with the CMS detector at the LHC and corresponds to an integrated luminosity of 138 fb$^{-1}$. Events with a diphoton invariant mass greater than 500\GeV are considered. Two different techniques are used to predict the standard model backgrounds: parametric fits to the smoothly-falling background and a first-principles calculation of the standard model diphoton spectrum at next-to-next-to-leading order in perturbative quantum chromodynamics calculations. The first technique is sensitive to resonant excesses while the second technique can identify broad differences in the invariant mass shape. The data are used to constrain the production of heavy Higgs bosons, Randall-Sundrum gravitons, the large extra dimensions model of Arkani-Hamed, Dimopoulos, and Dvali (ADD), and the continuum clockwork mechanism. No statistically significant excess is observed. The present results are the strongest limits to date on ADD extra dimensions and RS gravitons with a coupling parameter greater than 0.1.

16 data tables

The product of the event selection efficiency (e) and the detector acceptance (A) is shown as a function of the signal resonance mass mX for the narrow signal width hypothesis ($\Gamma_{X}/m_{X} = 1.4 x 10^{4}$ for J = 0 and $~k = 0.01$ for J = 2). The total (black), EBEB (red), and EBEE (blue) curves are shown for spin (J) hypotheses J = 0 (solid) and J = 2 (dashed).

Figure 2: Observed diphoton invariant mass spectra for the EBEB category for the full Run 2 data set are shown. Also shown are the results of a likelihood fit to the background-only hypothesis. The black, red, green and blue lines indicate the result of the fit functions f1, f2, f3, and f4, respectively. The lower panels show the difference between the data and f1 fit, divided by the statistical uncertainty in the data points. dijet f1 = 0.13116092* pow(x,5.7466302555276645-0.7807885712668643*log(x)), expow1 f2 = 7.3165496e+10*exp(-0.0016273075*x)*pow(x, -1*1.8233539*1.8233539), invpow1 f3 = 8760.6423*(pow(1+x*0.0022831415,-1.*2.7013689*2.7013689)), invpowlin1 f4 = 2124447.3*(pow(1+0.029456453*x,-3.8645171-0.00027603566*x)).

Figure 2: Observed diphoton invariant mass spectra for the EBEE category for the full Run 2 data set are shown. Also shown are the results of a likelihood fit to the background-only hypothesis. The black, red, green and blue lines indicate the result of the fit functions f1, f2, f3, and f4, respectively. The lower panels show the difference between the data and f1 fit, divided by the statistical uncertainty in the data points. dijet f1 = 1.81866e-22*pow(x,19.5547-1.7634*log(x)), expow1 f2 = 69750*exp(-0.00368224*x)*pow(x, -1.*0.975269*0.975269, invpow1 f3 = 508.838*pow(1+x*0.000294278,-1.*4.5514*4.5514), invpowlin1 f4 = 470.588*pow(1+x* 5.07338e-05,-114.601+0.00817169*x)

More…

Inclusive and differential cross-section measurements of $t\bar{t}Z$ production in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector, including EFT and spin-correlation interpretations

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
CERN-EP-2023-252, 2023.
Inspire Record 2744513 DOI 10.17182/hepdata.146693

Measurements of both the inclusive and differential production cross sections of a top-quark-top-antiquark pair in association with a $Z$ boson ($t\bar{t}Z$) are presented. Final states with two, three or four isolated leptons (electrons or muons) are targeted. The measurements use the data recorded by the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider during the years 2015-2018, corresponding to an integrated luminosity of $140$ fb$^{-1}$. The inclusive cross section is measured to be $\sigma_{t\bar{t}Z}= 0.86 \pm 0.04~\mathrm{(stat.)} \pm 0.04~\mathrm{(syst.)}~$pb and found to be in agreement with the most advanced Standard Model predictions. The differential measurements are presented as a function of a number of observables that probe the kinematics of the $t\bar{t}Z$ system. Both the absolute and normalised differential cross-section measurements are performed at particle level and parton level for specific fiducial volumes, and are compared with NLO+NNLL theoretical predictions. The results are interpreted in the framework of Standard Model effective field theory and used to set limits on a large number of dimension-6 operators involving the top quark. The first measurement of spin correlations in $t\bar{t}Z$ events is presented: the results are in agreement with the Standard Model expectations, and the null hypothesis of no spin correlations is disfavoured with a significance of $1.8$ standard deviations.

385 data tables

All the entries of this HEP data record are listed. Figure and Table numbers are the same as in the paper.

Definition of the dilepton signal regions.

Definition of the trilepton signal regions.

More…

Measurement of the $t\bar{t}$ cross section and its ratio to the $Z$ production cross section using $pp$ collisions at $\sqrt{s} = 13.6$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 848 (2024) 138376, 2024.
Inspire Record 2689657 DOI 10.17182/hepdata.143515

The inclusive top-quark-pair production cross section $\sigma_{t\bar{t}}$ and its ratio to the $Z$-boson production cross section have been measured in proton--proton collisions at $\sqrt{s} = 13.6$ TeV, using 29 fb${}^{-1}$ of data collected in 2022 with the ATLAS experiment at the Large Hadron Collider. Using events with an opposite-charge electron-muon pair and $b$-tagged jets, and assuming Standard Model decays, the top-quark-pair production cross section is measured to be $\sigma_{t\bar{t}} = 850 \pm 3\mathrm{(stat.)}\pm 18\mathrm{(syst.)}\pm 20\mathrm{(lumi.)}$ pb. The ratio of the $t\bar{t}$ and the $Z$-boson production cross sections is also measured, where the $Z$-boson contribution is determined for inclusive $e^+e^-$ and $\mu^+\mu^-$ events in a fiducial phase space. The relative uncertainty on the ratio is reduced compared to the $t\bar{t}$ cross section, thanks to the cancellation of several systematic uncertainties. The result for the ratio, $R_{t\bar{t}/Z} = 1.145 \pm 0.003\mathrm{(stat.)}\pm 0.021\mathrm{(syst.)}\pm 0.002\mathrm{(lumi.)}$ is consistent with the Standard Model prediction using the PDF4LHC21 PDF set.

8 data tables

The fiducial phase-space definition for the $Z$-boson measurement. Born-level leptons are used.

The measured $t\bar{t}$ cross section and the ratio of the cross sections of $t\bar{t}$ and the $Z$-boson. Full phase-space is considered for $t\bar{t}$, while fiducial phase-space is considered for the $Z$-boson.

Table with pre-fit yields in the four regions used in the measurement

More…

Search for production of a single vector-like quark decaying to tH or tZ in the all-hadronic final state in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-B2G-19-001, 2024.
Inspire Record 2784426 DOI 10.17182/hepdata.144172

A search for electroweak production of a single vector-like T quark in association with a bottom (b) quark in the all-hadronic decay channel is presented. This search uses proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the CMS experiment at the CERN LHC during 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$ The T quark is assumed to have charge 2/3 and decay to a top (t) quark and a Higgs (H) or Z boson. Event kinematics and the presence of jets containing b hadrons are used to reconstruct the hadronic decays of the t quark and H or Z boson. No significant deviation from the standard model prediction is observed in the data. The 95% confidence level upper limits on the product of the production cross section and branching fraction of a T quark produced in association with a b quark and decaying via tH or tZ range from 1260 to 68 fb for T quark masses of 600-1200 GeV.

57 data tables

Five-jet invariant mass distributions in the 2M1L region after the high-mass (green crosses) and low-mass (black circles) selections in 2018 dataset. The low-mass selection results in a mass distribution that is smoothly falling, unlike the high-mass selection. The high-mass selection is more efficient for signal T masses above 700 GeV.

Weights from b tagging efficiency ratios as functions of the five-jet invariant mass in 2018 data for the low-mass selection, connecting the 2M1L and 3M regions. The red line corresponds to the central value of the transfer function and the shaded area represents the 95% confidence level uncertainty band. For the low-mass analysis only signals with mass below 800GeV are tested, so primarily the lower part of the distribution contributes to the final result.

Weights from b tagging efficiency ratios as functions of the five-jet invariant mass in 2018 data for the low-mass selection, connecting the 3M and 3T regions. The red line corresponds to the central value of the transfer function and the shaded area represents the 95% confidence level uncertainty band. For the low-mass analysis only signals with mass below 800GeV are tested, so primarily the lower part of the distribution contributes to the final result.

More…

Precise Measurement of the $e^+ e^- \to \pi^+\pi^- (\gamma)$ Cross Section with the Initial-State Radiation Method at BABAR

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 86 (2012) 032013, 2012.
Inspire Record 1114155 DOI 10.17182/hepdata.115140

A precise measurement of the cross section of the process $e^+e^-\to\pi^+\pi^-(\gamma)$ from threshold to an energy of 3GeV is obtained with the initial-state radiation (ISR) method using 232fb$^{-1}$ of data collected with the BaBar detector at $e^+e^-$ center-of-mass energies near 10.6GeV. The ISR luminosity is determined from a study of the leptonic process $e^+e^-\to\mu^+\mu^-(\gamma)\gamma_{\rm ISR}$, which is found to agree with the next-to-leading-order QED prediction to within 1.1%. The cross section for the process $e^+e^-\to\pi^+\pi^-(\gamma)$ is obtained with a systematic uncertainty of 0.5% in the dominant $\rho$ resonance region. The leading-order hadronic contribution to the muon magnetic anomaly calculated using the measured $\pi\pi$ cross section from threshold to 1.8GeV is $(514.1 \pm 2.2({\rm stat}) \pm 3.1({\rm syst}))\times 10^{-10}$.

3 data tables

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ The cross section values (nb) for 337 CM energy intervals (GeV) from 0.3 to 3 GeV. The cross section is bare (excluding vacuum polarization) and includes the emission of final state photons. ***WARNING*** The quoted errors are from the diagonal elements of the statistical covariance matrix (reported the Table titled "Bare cross-section statistical covariance") and added quadratically with the systematic uncertainties (reported in the Table titled "Bare cross-section systematic uncertainties"). These errors can be used when plotting the results as they are representative of the precision achieved. However, any calculation involving the cross section over some energy range MUST use, to be meaningful, the full statistical covariance matrix and the proper correlations of the systematic uncertainties. ***WARNING***

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ systematic uncertainties contributions and total systematic uncertainties, for 337 CM energy intervals (GeV), from 0.3 to 3 GeV. All systematics contributions are each 100% correlated in all energy bins.

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ statistical covariance matrix, for 337x337 CM energy intervals (GeV), from 0.3 to 3 GeV.


Measurement of $\sigma(e^+ e^- \to \pi^+ \pi^-)$ from threshold to 0.85 GeV$^2$ using Initial State Radiation with the KLOE detector

The KLOE collaboration Ambrosino, F. ; Antonelli, A. ; Antonelli, M. ; et al.
Phys.Lett.B 700 (2011) 102-110, 2011.
Inspire Record 859660 DOI 10.17182/hepdata.96268

We have measured the cross section of the radiative process e+e- -> pi+pi-gamma with the KLOE detector at the Frascati phi-factory DAPHNE, from events taken at a CM energy W=1 GeV. Initial state radiation allows us to obtain the cross section for e+e- -> pi+pi-, the pion form factor |F_pi|^2 and the dipion contribution to the muon magnetic moment anomaly, Delta a_mu^{pipi} = (478.5+-2.0_{stat}+-5.0_{syst}+-4.5_{th}) x 10^{-10} in the range 0.1 < M_{pipi}^2 < 0.85 GeV^2, where the theoretical error includes a SU(3) ChPT estimate of the uncertainty on photon radiation from the final pions. The discrepancy between the Standard Model evaluation of a_mu and the value measured by the Muon g-2 collaboration at BNL is confirmed.

15 data tables

Differential cross section for $e^+e^-\rightarrow\pi^+\pi^-\gamma$, with $50^o<\theta_\gamma<130^o$

Statistical covariance matrix for differential cross section for $e^+e^-\rightarrow\pi^+\pi^-\gamma$, with $50^o<\theta_\gamma<130^o$

Inverse statistical covariance matrix for differential cross section for $e^+e^-\rightarrow\pi^+\pi^-\gamma$, with $50^o<\theta_\gamma<130^o$

More…

Measurement and interpretation of same-sign $W$ boson pair production in association with two jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 04 (2024) 026, 2024.
Inspire Record 2729396 DOI 10.17182/hepdata.141650

This paper presents the measurement of fiducial and differential cross sections for both the inclusive and electroweak production of a same-sign $W$-boson pair in association with two jets ($W^\pm W^\pm jj$) using 139 fb$^{-1}$ of proton-proton collision data recorded at a centre-of-mass energy of $\sqrt{s}=13$ TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity difference. The measured fiducial cross sections for electroweak and inclusive $W^\pm W^\pm jj$ production are $2.92 \pm 0.22\, \text{(stat.)} \pm 0.19\, \text{(syst.)}$ fb and $3.38 \pm 0.22\, \text{(stat.)} \pm 0.19\, \text{(syst.)}$ fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confidence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons $H^{\pm\pm}$ that are produced in vector-boson fusion processes and decay into a same-sign $W$ boson pair is performed. The largest deviation from the Standard Model occurs for an $H^{\pm\pm}$ mass near 450 GeV, with a global significance of 2.5 standard deviations.

30 data tables

Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\ell\ell}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 11.

Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\mathrm{T}}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 12.

Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\mathrm{jj}}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 13.

More…

Search for pair production of boosted Higgs bosons via vector-boson fusion in the $b\bar{b}b\bar{b}$ final state using $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-092, 2024.
Inspire Record 2781483 DOI 10.17182/hepdata.150977

A search for Higgs boson pair production via vector-boson fusion is performed in the Lorentz-boosted regime, where a Higgs boson candidate is reconstructed as a single large-radius jet, using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV recorded by the ATLAS detector at the Large Hadron Collider. Only Higgs boson decays into bottom quark pairs are considered. The search is particularly sensitive to the quartic coupling between two vector bosons and two Higgs bosons relative to its Standard Model prediction, $\kappa_{2V}$. This study constrains $\kappa_{2V}$ to $0.55 < \kappa_{2V} < 1.49$ at 95% confidence level. The value $\kappa_{2V} = 0$ is excluded with a significance of 3.8 standard deviations with other Higgs boson couplings fixed to their Standard Model values. A search for new heavy spin-0 resonances that would mediate Higgs boson pair production via vector-boson fusion is carried out in the mass range of 1-5 TeV for the first time under several model and decay-width assumptions. No significant deviation from the Standard Model hypothesis is observed and exclusion limits at 95% confidence level are derived.

23 data tables

The mass planes of the reconstructed Higgs boson candidates for the 1Pass selections of the analysis, shown for the data events.

The mass planes of the reconstructed Higgs boson candidates for the 2Pass selections of the analysis, shown for the data events.

The mass planes of the reconstructed Higgs boson candidates for the 2Pass selections of the analysis, shown for the VBF SM $\kappa_{2V} = 1$ HH samples.

More…

Version 2
Search for nearly mass-degenerate higgsinos using low-momentum mildly-displaced tracks in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-012, 2024.
Inspire Record 2751400 DOI 10.17182/hepdata.146944

Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass-splitting is $\mathcal{O}$(1 GeV). This Letter presents a novel search for nearly mass-degenerate higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass-splittings between the lightest charged and neutral higgsinos from 0.3 GeV to 0.9 GeV is excluded at 95% confidence level, with a maximum reach of approximately 170 GeV in the higgsino mass.

31 data tables

Number of expected and observed data events in the SR (top), and the model-independent upper limits obtained from their consistency (bottom). The symbol $\tau_{\ell}$ ($\tau_{h}$) refers to fully-leptonic (hadron-involved) tau decays. The Others category includes contributions from minor background processes including $t\bar{t}$, single-top and diboson. The individual uncertainties can be correlated and do not necessarily sum up in quadrature to the total uncertainty. The bottom section shows the observed 95% CL upper limits on the visible cross-section ($\langle\epsilon\sigma\rangle_{\mathrm{obs}}^{95}$), on the number of generic signal events ($S_{\mathrm{obs}}^{95}$) as well as the expected limit ($S_{\mathrm{exp}}^{95}$) given the expected number (and $\pm 1\sigma$ deviations from the expectation) of background events.

Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.

Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.

More…