Two Jet Differential Cross-Section in anti-p p Collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 64 (1990) 157, 1990.
Inspire Record 283353 DOI 10.17182/hepdata.19998

The two-jet differential cross section d3σ(p¯p→jet 1+jet 2+X)/dEtdη1dη2, averaged over -0.6≤η1≤0.6, at √s =1.8 TeV, has been measured in the Collider Detector at Fermilab. The predictions of leading-order quantum chromodynamics for most choices of structure functions show agreement with the data.

6 data tables

Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.

Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.

Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.

More…

Measurement of R and Search for New Quark Flavors Decaying Into Multi - Jet Final States in $e^+ e^-$ Collisions Between 54-{GeV} and 61.4-{GeV} c.m. Energies

The VENUS collaboration Abe, K. ; Amako, K. ; Arai, Y. ; et al.
Phys.Lett.B 234 (1990) 382-388, 1990.
Inspire Record 283774 DOI 10.17182/hepdata.29755

We accumulated e + e − annihilations into multi-hadrons at CM energies between 54.0 and 61.4 GeV with the VENUS detector at TRISTAN. Measured R -ratios are consistent with the standard model using the Z-boson mass; 91.1 GeV/ c 2 . Using two new observables, we searched for a planar four-jet and other multi-jet events resulting from the decay of a charge — 1 3 e b ' quark. Having observed no positive signals, we excluded b' masses between 19.4 and 28.2 GeV/ c 2 with a 95% confidence level, regardless of branching into charged current and loop-induced flavor-changing neutral current decay, including a possible Higgs decay process. The charge + 2 3 e top quark was excluded below f30.2 GeV/ c 2 .

1 data table

R value measurements.


Scaling of Pseudorapidity Distributions at c.m. Energies Up to 0.9-TeV

The UA5 collaboration Alner, G.J. ; Ansorge, R.E. ; Asman, B. ; et al.
Z.Phys.C 33 (1986) 1-6, 1986.
Inspire Record 233599 DOI 10.17182/hepdata.15816

New data are presented on charged particle pseudorapidity distributions for inelastic events produced at c.m. energies\(\sqrt s \)=200 and 900 GeV. The data were obtained at the CERN antiproton-proton Collider operated in a new pulsed mode. The rise of the central density ρ(0) at energies up to\(\sqrt s \)=900 GeV has been studied. A new form of central region scaling is found involving the densityρn(0) for charged multiplicityn, namely that the scaled central densityρn(0)/ρ(0) expressed as a function ofz=n/〈n〉 is independent ofs. Scaling in the fragmentation region holds to 10–20%, and the small amount of scalebreaking observed here could be accommodated within the framework suggested by Wdowcyk and Wolfendale to account for both accelerator and cosmic ray data.

4 data tables
More…

Diffraction Dissociation in Proton Proton Collisions at {ISR} Energies

Armitage, J.C.M. ; Benz, P. ; Bobbink, G.J. ; et al.
Nucl.Phys.B 194 (1982) 365-372, 1982.
Inspire Record 164126 DOI 10.17182/hepdata.7553

Data are presented on the reaction pp → pX in the range of four-momentum transfer squared 0.04< − t <0.80 GeV 2 and of c.m. energy squared 550 < s < 3880 GeV 2 . Invariant cross sections are given as a function of M 2 / s , where M is the mass of the missing system X, and of t . The cross sections are shown to scale in the variable M 2 / s , for M 2 / s > 0.01. The total diffractive cross section integrated over t and M 2 / s up to M 2 / s =0.05 rises by approximately 15% from σ dif =6.5±0.2 mb at 550 GeV 2 to σ dif =7.5±0.3 mb at 3880 GeV 2 .

9 data tables

No description provided.

No description provided.

No description provided.

More…

Multiplicity Distributions in $p \alpha$ and $\alpha \alpha$ Collisions in the {CERN} {ISR}

The Axial Field Spectrometer collaboration Akesson, T. ; Albrow, M.G. ; Almehed, S. ; et al.
Phys.Lett.B 119 (1982) 464, 1982.
Inspire Record 179518 DOI 10.17182/hepdata.6665

Measurements of charged particle multiplicity distributions in the central rapidity region in p-p and p-α, and α-α collisions are reported. They are better fitted to the “wounded nucleon” than to the “gluon string” model. The average transverse momenta, for all three reactions, are identical (and almost independent of multiplicity) up to very high multiplicities.

2 data tables

THE FIRST PP DATA IS AT 44 GEV, THE SECOND AT 63 GEV.

No description provided.


Precision Measurement of Proton Proton Total Cross-section at the {CERN} Intersecting Storage Rings

Amaldi, U. ; Cocconi, G. ; Diddens, A.N. ; et al.
Nucl.Phys.B 145 (1978) 367-401, 1978.
Inspire Record 131412 DOI 10.17182/hepdata.34944

The measurement of the proton-proton total cross section performed by the CERN-Pisa-Rome-Stony Brook Collaboration at the CERN ISR is discussed in detail. The total interaction rate, the elastic scattering rate in the forward direction, and the machine luminosity were measured simultaneously to obtain three different determinations of the total cross section. Consistent results were found, which made it possible to prove the reliability of the Van der Meer luminosity calibration within +-0.9% and to achieve a precision of +-0.6% in the measurement of the total cross section.

1 data table

No description provided.


The Real Part of the Forward Proton Proton Scattering Amplitude Measured at the CERN Intersecting Storage Rings

Amaldi, U. ; Cocconi, G. ; Diddens, A.N. ; et al.
Phys.Lett.B 66 (1977) 390-394, 1977.
Inspire Record 110800 DOI 10.17182/hepdata.27584

The real part of the proton proton elastic scattering amplitude has been determined from its interference with the Coulomb amplitude at total centre-of-mass energies up to 62 GeV. The observed steady increase of ϱ with energy indicates that the total proton proton cross section continues to increase well beyond this energy.

2 data tables

No description provided.

USING SIG AND SLOPE OBTAINED FROM INTERPOLATIONS OF PREVIOUS MEASUREMENTS.


New measurements of proton proton total cross-section at the CERN intersecting storage rings

The CERN-Pisa-Rome-Stony Brook collaboration Amaldi, U. ; Cocconi, G. ; Diddens, A.N. ; et al.
Phys.Lett.B 62 (1976) 460-466, 1976.
Inspire Record 108915 DOI 10.17182/hepdata.27653

Measurements of the proton-proton total cross section have been made with increased precision (±0.6%) over the ISR energy range s =23.5−62.7 GeV . Two different experimental methods gave consistent results, showing that the total cross section increases 10% over the ISR range and in addition that the absolute value of the ISR luminosity can be measured to ±0.9%.

1 data table

CROSS SECTIONS ARE A WEIGHTED AVERAGE OF THOSE OBTAINED BY THE PISA-STONY BROOK METHOD AND BY THE CERN-ROME (OPTICAL THEOREM) METHOD.


Determination of the Angular and Energy Dependence of Hard Constituent Scattering From $\pi^0$ Pair Events at the {CERN} Intersecting Storage Rings

The CERN-Columbia-Oxford-Rockefeller & CCOR collaborations Angelis, A.L.S. ; Besch, H.J. ; Blumenfeld, Barry J. ; et al.
Nucl.Phys.B 209 (1982) 284-300, 1982.
Inspire Record 179519 DOI 10.17182/hepdata.34059

We present data on proton-proton collisions, obtained at the CERN Intersecting Storage Rings, in which two roughly back-to-back π 0 's of high transverse momentum ( p T ) were produced. The angular distribution of the dipion axis relative to the collision axis is found to be independent of both the effective mass m of the dipion system and the centre-of-mass energy √ s of the proton-proton collision. The cross-sections d σ d m at the values of √ s satisfy a scaling law of the form d σ d m = G(x) m n , where x = m(π 0 , π 0 )//trs and n = 6.5 ± 0.5 . We show from our data that the leading π 0 carries most of the momentum of the scattered parton. Given this fact, the axis of the dipion system follows closely the direction of the scattered constituents, and we exploit this to determine the angular dependence of the hard-scattering subprocess. We also compare our data with the lowest order QCD predictions using structure functions as determined in deep-inelastic scattering and fragmentation functions from electron-positron annihilation.

1 data table

No description provided.