Studies of W W and W Z production and limits on anomalous W W gamma and W W Z couplings

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 60 (1999) 072002, 1999.
Inspire Record 499282 DOI 10.17182/hepdata.42124

Evidence of anomalous WW and WZ production was sought in pbar{p} collisions at a center-of-mass energy of sqrt(s) = 1.8 TeV. The final states $WW (WZ) to mu-nu-jet-jet + X, WZ to mu-nu-e-e + X and WZ to e-nu-e-e + X were studied using a data sample corresponding to an integrated luminosity of approximately 90 pb-1. No evidence of anomalous diboson production was found. Limits were set on anomalous WWgamma and WWZ couplings and were combined with our previous results. The combined 95% confidence level anomalous coupling limits for Lambda=2 TeV are -0.25 LE Delta-kappa LE 0.39 (lambda=0) and -0.18 LE lambda LE 0.19 (Delta \kappa = 0), assuming the WWgamma couplings are equal to the WWZ couplings.

2 data tables

CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONST(NAME=SCALE)**2)**n. KAPPA_GZ means KAPPA_GAMMA = KAPPA_Z. LAMBDA_GZ means LAMBDA_GAMMA = LAMBDA_Z.

CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONST(NAME=SCALE)**2)**n.


Studies of hadronic event structure in e+ e- annihilation from 30-GeV to 209-GeV with the L3 detector

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Rept. 399 (2004) 71-174, 2004.
Inspire Record 652683 DOI 10.17182/hepdata.54900

In this Report, QCD results obtained from a study of hadronic event structure in high energy e^+e^- interactions with the L3 detector are presented. The operation of the LEP collider at many different collision energies from 91 GeV to 209 GeV offers a unique opportunity to test QCD by measuring the energy dependence of different observables. The main results concern the measurement of the strong coupling constant, \alpha_s, from hadronic event shapes and the study of effects of soft gluon coherence through charged particle multiplicity and momentum distributions.

68 data tables

Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 130.1 GeV.

Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 136.1 GeV.

Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 161.3 GeV.

More…

Search for neutral supersymmetric Higgs bosons in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 86 (2001) 4472-4478, 2001.
Inspire Record 535426 DOI 10.17182/hepdata.42952

We present the results of a search for neutral Higgs bosons produced in association with $b$ quarks in $p\bar{p}\to b\bar{b} \phi\to b\bar{b}b\bar{b}$ final states with $91 \pm 7$ pb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s}=1.8$ TeV recorded by the Collider Detector at Fermilab. We find no evidence of such a signal and the data is interpreted in the context of the neutral Higgs sector of the Minimal Supersymmetric extension of the Standard Model. With basic parameter choices for the supersymmetric scale and the stop quark mixing, we derive 95% C.L. lower mass limits for neutral Higgs bosons for $\tb$ values in excess of 35.

1 data table

Here HIGGS stands for H(1)0 or H(2)0 or A0 supersymmetric Higgs boson.


Search for new heavy particles in the W Z0 final state in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 88 (2002) 071806, 2002.
Inspire Record 560924 DOI 10.17182/hepdata.42895

We present a search for new heavy particles, $X$, which decay via $X \to WZ \to e\nu +jj$ in $p{\bar p}$ collisions at $\sqrt{s}$ = 1.8 TeV. No evidence is found for production of $X$ in 110 pb$^{-1}$ of data collected by the Collider Detector at Fermilab. Limits are set at the 95% C.L. on the mass and the production of new heavy charged vector bosons which decay via $W'\to WZ$ in extended gauge models as a function of the width, $\Gamma (W')$, and mixing factor between the $W'$ and the Standard Model $W$ bosons.

1 data table

CONST(NAME=XI) is the mixing factor between WPRIME and W-boson.


Search for narrow diphoton resonances and for gamma gamma + w /z signatures in p anti p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 64 (2001) 092002, 2001.
Inspire Record 557012 DOI 10.17182/hepdata.42918

We present results of searches for diphoton resonances produced both inclusively and also in association with a vector boson (W or Z) using 100 $pb^{-1}$ of $p\bar{p}$ collisions using the CDF detector. We set upper limits on the product of cross section times branching ratio for both $p\bar{p} \to \gamma \gamma + X$ and $p \bar{p} \to \gamma \gamma + W/Z$. Comparing the inclusive production to the expectations from heavy sgoldstinos we derive limits on the supersymmetry-breaking scale $\sqrt{F}$ in the TeV range, depending on the sgoldstino mass and the choice of other parameters. Also, using a NLO prediction for the associated production of a Higgs boson with a W or Z boson, we set an upper limit on the branching ratio for $H \to \gamma \gamma$. Finally, we set a lower limit on the mass of a 'bosophilic' Higgs boson (e.g. one which couples only to $\gamma, W,$ and $Z$ bosons with standard model couplings) of 82 GeV/$c^2$ at 95% confidence level.

2 data tables

No description provided.

No description provided.


Search for first-generation scalar and vector leptoquarks

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abdesselam, A. ; et al.
Phys.Rev.D 64 (2001) 092004, 2001.
Inspire Record 557085 DOI 10.17182/hepdata.42922

We describe a search for the pair production of first-generation scalar and vector leptoquarks in the eejj and enujj channels by the D0 Collaboration. The data are from the 1992--1996 ppbar run at sqrt{s} = 1.8 TeV at the Fermilab Tevatron collider. We find no evidence for leptoquark production; in addition, no kinematically interesting events are observed using relaxed selection criteria. The results from the eejj and enujj channels are combined with those from a previous D0 analysis of the nunujj channel to obtain 95% confidence level (C.L.) upper limits on the leptoquark pair-production cross section as a function of mass and of beta, the branching fraction to a charged lepton. These limits are compared to next-to-leading-order theory to set 95% C.L. lower limits on the mass of a first-generation scalar leptoquark of 225, 204, and 79 GeV/c^2 for beta=1, 1/2, and 0, respectively. For vector leptoquarks with gauge (Yang-Mills) couplings, 95% C.L. lower limits of 345, 337, and 206 GeV/c^2 are set on the mass for beta=1, 1/2, and 0, respectively. Mass limits for vector leptoquarks are also set for anomalous vector couplings.

3 data tables

No description provided.

No description provided.

No description provided.


Measurement of deeply virtual Compton scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 573 (2003) 46-62, 2003.
Inspire Record 618776 DOI 10.17182/hepdata.46432

The cross section for deeply virtual Compton scattering in the reaction ep -> e gamma p has been measured with the ZEUS detector at HERA using integrated luminosities of 95.0 pb-1 of e+p and 16.7 pb-1 of e-p collisions. Differential cross sections are presented as a function of the exchanged-photon virtuality, Q2, and the centre-of-mass energy, W, of the gamma*p system in the region 5 < Q2 < 100 GeV2 and 40 < W < 140 GeV. The measured cross sections rise steeply with increasing W. The measurements are compared to QCD-based calculations.

4 data tables

Measurements of the DVCS process cross section as a function of Q**2 at average W = 89 GeV. Data are given seperately for the E+ P and E- P interactions.

Measurements of the DVCS process cross section as a function of W at average Q**2 = 9.6 GeV**2. For the E+ P data sample.

Measurements of the DVCS process cross section as a function of W at average Q**2 = 9.6 GeV**2. For the E- P data sample.

More…

Measurement of the spin-density matrix elements in exclusive electroproduction of rho0 mesons at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 12 (2000) 393-410, 2000.
Inspire Record 505172 DOI 10.17182/hepdata.24209

Exclusive electroproduction of rho^0 mesons has been measured using the ZEUS detector at HERA in two Q^2 ranges, 0.25<Q^2<0.85 GeV^2 and 3<Q^2<30 GeV^2. The low-Q^2 data span the range 20<W<90 GeV; the high-Q^2 data cover the 40<W<120 GeV interval. Both samples extend up to four-momentum transfers of |t|=0.6 GeV^2. The distribution in the azimuthal angle between the positron scattering plane and the rho^0 production plane shows a small but significant violation of s-channel helicity conservation, corresponding to the production of longitudinally polarised (i.e. helicity zero) rho^0 mesons from transverse photons. Measurements of the 15 combinations of spin-density matrix elements which completely define the angular distributions are presented and discussed.

8 data tables

The spin-density matrix elements obtained from the BPC low Q**2 data set.

The spin-density matrix elements obtained from the DIS high Q**2 data set.

The spin-density matrix elements obtained from the low Q**2 BPC data set in two W intervals.

More…

A measurement of the t dependence of the helicity structure of diffractive rho meson electroproduction at HERA.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 539 (2002) 25-39, 2002.
Inspire Record 584099 DOI 10.17182/hepdata.46666

The helicity structure of the diffractive electroproduction of rho mesons, e + p -> e + rho + Y, is studied in a previously unexplored region of large four-momentum transfer squared at the proton vertex, t: 0 < t' < 3 GeV^2, where t' = |t| - |t|_min. The data used are collected with the H1 detector at HERA in the kinematic domain 2.5 < Q^2 < 60 GeV^2, 40 < W < 120 GeV. No t dependence of the r^04_00 spin density matrix element is found. A significant t dependent helicity non-conservation from the virtual photon to the rho meson is observed for the spin density matrix element combinations r^5_00+2r^5_11 and r^1_00+2r^1_11. These t dependences are consistently described by a perturbative QCD model based on the exchange of two gluons.

1 data table

Measurements of the combinations of spin density matrices as a function of TP = |T| - |Tmin|, where |Tmin| is the minimal values of |T| kinematically required for the vector meson and the system X to aquire their effective mass through longitudinal momentum transfer.


Determination of alpha(s) from hadronic event shapes in e+ e- annihilation at 192-GeV <= s**(1/2) <= 208-GeV

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 536 (2002) 217-228, 2002.
Inspire Record 586115 DOI 10.17182/hepdata.49741

Results are presented from a study of the structure of high energy hadronic events recorded by the L3 detector at sqrt(s)>192 GeV. The distributions of several event shape variables are compared to resummed O(alphaS^2) QCD calculations. We determine the strong coupling constant at three average centre-of-mass energies: 194.4, 200.2 and 206.2 GeV. These measurements, combined with previous L3 measurements at lower energies, demonstrate the running of alphaS as expected in QCD and yield alphaS(mZ) = 0.1227 +- 0.0012 +- 0.0058, where the first uncertainty is experimental and the second is theoretical.

9 data tables

The measured ALPHA_S at three centre-of-mass energies from fits to the individual event shape distributions. The first error is statistcal, the first DSYS error is the experimental systematic uncertainty, and the second DSYS error is the theoryuncertainty.

Updated ALPHA_S measurements from the BT, BW and C-Parameter distributions,from earlier L3 data at lower centre-of-mass energies.. The first error is the total experimental error (stat+sys in quadrature) and the DSYS error is the theory uncertainty.

Combined ALPHA_S values from the five event shape variables. The first error is statistical, the first DSYS error is the experimental systematic uncertainity, the second DSYS error is the uncertainty from the hadronisdation models, andthethird DSYS errpr is the uncertainty due to uncalculated higher orders in the QCDpredictions.

More…