Negative Hyperon Production in High-Energy Proton Interactions

Hungerbuhler, V. ; Majka, R. ; Marx, J.N. ; et al.
Phys.Rev.D 12 (1975) 1203-1210, 1975.
Inspire Record 104138 DOI 10.17182/hepdata.4668

Momentum spectra for forward Σ− and Ξ− production by protons on beryllium are presented. Σ− production data for two primary proton momenta are compared to test scaling of the invariant cross section. In addition, the observed single-particle momentum distributions are compared with single-particle spectra from other inclusive reactions initiated by protons.

0 data tables match query

Sigma- production in high-energy proton interactions

Hungerbuehler, V. ; Majka, R. ; Marx, J.N. ; et al.
Phys.Rev.Lett. 30 (1973) 1234-1237, 1973.
Inspire Record 84497 DOI 10.17182/hepdata.21625

Momentum spectra for forward Σ− production on beryllium by protons of momentum 25.8 and 29.4 GeVc are presented. Data for the two primary proton momenta are compared for scaling behavior in the invariant cross section. In addition, the observed single-particle momentum distributions are compared with single-particle spectra from other inclusive reactions initiated by protons.

0 data tables match query

Polarization of Muoproduced J/psi (3100)

Clark, A.R. ; Johnson, K.J. ; Kerth, L.T. ; et al.
Phys.Rev.Lett. 45 (1980) 2092, 1980.
Inspire Record 155741 DOI 10.17182/hepdata.20697

The polarization and Q2 dependence of muoproduced ψ→μ+μ− have been analyzed in a magnetized-steel calorimeter at Fermilab. The reaction γVN→ψN is found to be helicity conserving. Even after allowance for possible Q2 dependence of the decay angular distribution, the ψ muoproduction cross section falls more steeply in Q2 than predicted by ψ dominance.

0 data tables match query

A Prompt photon cross-section measurement in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M. ; Amidei, D. ; et al.
Phys.Rev.D 48 (1993) 2998-3025, 1993.
Inspire Record 353026 DOI 10.17182/hepdata.22677

The first prompt photon measurement from the CDF experiment at the Fermilab pp¯ Collider is presented. Two independent methods are used to measure the cross section: one for high transverse momentum (PT) and one for lower PT. Comparisons to various theoretical calculations are shown. The cross section agrees qualitatively with QCD calculations but has a steeper slope at low PT.

0 data tables match query

Dimuon Production in 800 GeV Proton Nucleus Collisions

Brown, C.N. ; Cooper, W.E. ; Finley, D. ; et al.
Phys.Rev.Lett. 63 (1989) 2637-2640, 1989.
Inspire Record 288346 DOI 10.17182/hepdata.20031

A measurement of continuum dimuon production in proton-copper collisions at 800-GeV incident energy is presented. The dimuons observed in this experiment cover the mass range from 6.5 to 18 GeV near y=0 in the proton-nucleon center-of-momentum frame. Scaling forms of the cross section for the continuum are compared with the results of other experiments in the context of the parton model and quantum chromodynamics. The present limitations of such scaling comparisons are discussed.

0 data tables match query

Dimuon production in proton - copper collisions at s**(1/2) = 38.8-GeV

Moreno, G. ; Brown, C.N. ; Cooper, W.E. ; et al.
Phys.Rev.D 43 (1991) 2815-2836, 1991.
Inspire Record 302822 DOI 10.17182/hepdata.22831

Experimental results on the production of dimuons by 800-GeV protons incident on a copper target are presented. The results include measurements of both the continuum of dimuons and the dimuon decays of the three lowest-mass ϒ S states. A description of the apparatus, data acquisition, and analysis techniques is included. A comparison of the results with data taken at lower incident energies indicates a scaling behavior of the continuum dimuon yields.

0 data tables match query

MUON PROTON DEEP INELASTIC SCATTERING

Entenberg, A. ; Jostlein, H. ; Kostoulas, I. ; et al.
Phys.Rev.Lett. 32 (1974) 486, 1974.
Inspire Record 80537 DOI 10.17182/hepdata.21303

We have measured muon-proton deep inelastic scattering in the range 0.4<q2<3.6 (GeV/c)2. The data are consistent with muon-electron universality, and if the ratio ρ=νW2(μ−p)νW2(e−p) is fitted with the form ρ=N(1+q2Λ2)−2, we obtain N=0.997±0.043 and Λ−2=+0.006±0.016 (GeV/c)2. This result establishes that |Λ|>~5.1 GeV/c with 95% confidence.

0 data tables match query

A Precision measurement of the prompt photon cross-section in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amidei, D. ; et al.
Phys.Rev.Lett. 73 (1994) 2662-2666, 1994.
Inspire Record 375582 DOI 10.17182/hepdata.19680

A prompt photon cross section measurement from the Collider Detector at Fermilab experiment is presented. Detector and trigger upgrades, as well as 6 times the integrated luminosity compared with our previous publication, have contributed to a much more precise measurement and extended PT range. As before, QCD calculations agree qualitatively with the measured cross section, but the data has a steeper slope than the calculations.

0 data tables match query

Upsilon production in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.Lett. 75 (1995) 4358, 1995.
Inspire Record 398187 DOI 10.17182/hepdata.42349

We report on measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential, (d2σdPtdy)y=0, and integrated cross sections in pp¯ collisions at s=1.8 TeV using a sample of 16.6 ± 0.6 pb−1 collected by the Collider Detector at Fermilab. The three resonances were reconstructed through the decay ϒ→μ+μ−. Comparison is made to a leading order QCD prediction.

0 data tables match query

Precise measurement of neutrino and anti-neutrino differential cross sections.

The NuTeV collaboration Tzanov, M. ; Naples, D. ; Boyd, S. ; et al.
Phys.Rev.D 74 (2006) 012008, 2006.
Inspire Record 691719 DOI 10.17182/hepdata.11120

The NuTeV experiment at Fermilab has obtained a unique high statistics sample of neutrino and anti-neutrino interactions using its high-energy sign-selected beam. We present a measurement of the differential cross section for charged-current neutrino and anti-neutrino scattering from iron. Structure functions, F_2(x,Q^2) and xF_3(x,Q^2), are determined by fitting the inelasticity, y, dependence of the cross sections. This measurement has significantly improved systematic precision as a consequence of more precise understanding of hadron and muon energy scales.

0 data tables match query