Measurement and QCD analysis of neutral and charged current cross sections at HERA.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 30 (2003) 1-32, 2003.
Inspire Record 616311 DOI 10.17182/hepdata.11903

The inclusive e^+ p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA. The data were taken in 1999 and 2000 at a centre-of-mass energy of \sqrt{s} = 319 GeV and correspond to an integrated luminosity of 65.2 pb^-1. The cross sections are measured in the range of four-momentum transfer squared Q^2 between 100 and 30000 GeV^2 and Bjorken x between 0.0013 and 0.65. The neutral current analysis for the new e^+ p data and the earlier e^- p data taken in 1998 and 1999 is extended to small energies of the scattered electron and therefore to higher values of inelasticity y, allowing a determination of the longitudinal structure function F_L at high Q^2 (110 - 700 GeV^2). A new measurement of the structure function x F_3 is obtained using the new e^+ p and previously published e^\pm p neutral current cross section data at high Q^2. These data together with H1 low Q^2 precision data are further used to perform new next-to-leading order QCD analyses in the framework of the Standard Model to extract flavour separated parton distributions in the proton.

21 data tables match query

The NC cross section DSIG/DQ**2. There is an additional 1.5 PCT normalization uncertainty.

The CC cross section DSIG/DQ**2. There is an additional 1.5 PCT normalization uncertainty.

The NC cross section DSIG/DX for Q**2 > 1000 GeV**2. There is an additional 1.5 PCT normalization uncertainty.

More…

Study of photon dissociation in diffractive photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Z.Phys.C 75 (1997) 421-435, 1997.
Inspire Record 442287 DOI 10.17182/hepdata.10933

Diffractive dissociation of quasi-real photons at a photon-proton centre of mass energy of W 200 GeV is studied with the ZEUS detector at HERA. The process under consideration is gamma p -> X N, where X is the diffractively dissociated photon system of mass M_X and N is either a proton or a nucleonic system with mass M_N < 2GeV. The cross section for this process in the interval 3 < M_X < 24 GeV relative to the total photoproduction cross section was measured to be sigma~partial_D / sigma_tot = 6.2 +- 0.2(stat) +- 1.4(syst)%. After extrapolating this result to the mass interval of m_phi~2 < M_X~2 < 0.05 W~2 and correcting it for proton dissociation, the fraction of the total cross section attributed to single diffractive photon dissociation, gamma p -> X p, is found to be sigma_SD / sigma_tot = 13.3 +- 0.5(stat) +- 3.6(syst)%. The mass spectrum of the dissociated photon system in the interval 8 < M_X < 24 GeV can be described by the triple pomeron (PPP) diagram with an effective pomeron intercept of alpha_P(0) = 1.12 +- 0.04(stat) +- 0.08(syst). The cross section for photon dissociation in the range 3 < M_X < 8 GeV is significantly higher than that expected from the triple pomeron amplitude describing the region 8 < M_X < 24 GeV. Assuming that this discrepancy is due to a pomeron-pomeron-reggeon (PPR) term, its contribution to the diffractive cross section in the interval 3 < M_X < 24 GeV is estimated to be f_PPR = 26 +- 3(stat) +- 12(syst)%.

4 data tables match query

Fraction of the total photoproduction cross section attributed to the photon dissociation.

The fraction of the total photoproduction cross section due to single dif fractive photon dissociation, in the mass range M_phi**2 < M_DD < X >**2 < 0.05 *W**2.

Identification of the diffractive processes was performed on the basis of the shape of reconstructed hadronic mass spectrum. No rapidity-gap was required.

More…

Measurement of high-Q2 neutral current deep inelastic e+p scattering cross sections with a longitudinally polarised positron beam at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Rev.D 87 (2013) 052014, 2013.
Inspire Record 1183813 DOI 10.17182/hepdata.62614

Measurements of neutral current cross sections for deep inelastic scattering in e+p collisions at HERA with a longitudinally polarised positron beam are presented. The single-differential cross-sections d(sigma)/dQ2, d(sigma)/dx and d(sigma)/dy and the reduced cross-section were measured in the kinematic region Q2 > 185 GeV2 and y < 0.9, where Q2 is the four-momentum transfer squared, x the Bjorken scaling variable, and y the inelasticity of the interaction. The measurements were performed separately for positively and negatively polarised positron beams. The measurements are based on an integrated luminosity of 135.5 pb-1 collected with the ZEUS detector in 2006 and 2007 at a centre-of-mass energy of 318 GeV. The structure functions F3 and F3(gamma)Z were determined by combining the e+p results presented in this paper with previously published e-p neutral current results. The asymmetry parameter A+ is used to demonstrate the parity violation predicted in electroweak interactions. The measurements are well described by the predictions of the Standard Model.

26 data tables match query

The single-differential cross section DSIG/DQ**2 (Y<0.9,Y(1-x)**2>0.004), corrected to the electroweak Born level, for zero polarisation, Pe=0.

The single-differential cross section DSIG/DQ**2 (Y<0.9,Y(1-x)**2>0.004), corrected to the electroweak Born level, for positive (Pe=+0.32) and negative (Pe=-0.36) polarisations.

The single-differential cross section DSIG/DX (Y<0.9,Y(1-x)**2>0.004) at Q^2=185 GeV^2, corrected to the electroweak Born level, for zero (Pe=0), positive (Pe=+0.32) and negative (Pe=-0.36) polarisations.

More…

Measurement of the Inclusive ep Scattering Cross Section at Low $Q^2$ and x at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Eur.Phys.J.C 63 (2009) 625-678, 2009.
Inspire Record 817368 DOI 10.17182/hepdata.52425

A measurement of the inclusive ep scattering cross section is presented in the region of low momentum transfers, 0.2 GeV^2 < Q^2 < 12 GeV^2, and low Bjorken x, 5x10^-6 < x < 0.02. The result is based on two data sets collected in dedicated runs by the H1 Collaboration at HERA at beam energies of 27.6 GeV and 920 GeV for positrons and protons, respectively. A combination with data previously published by H1 leads to a cross section measurement of a few percent accuracy. A kinematic reconstruction method exploiting radiative ep events extends the measurement to lower Q^2 and larger x. The data are compared with theoretical models which apply to the transition region from photoproduction to deep inelastic scattering.

38 data tables match query

Reduced cross section as measured in the SVX data sample for Q**2 = 0.20 GeV**2. Additional 3 PCT luminosity uncertainty not included in the total error.

Reduced cross section as measured in the SVX data sample for Q**2 = 0.25 GeV**2. Additional 3 PCT luminosity uncertainty not included in the total error.

Reduced cross section as measured in the SVX data sample for Q**2 = 0.35 GeV**2. Additional 3 PCT luminosity uncertainty not included in the total error.

More…

Measurement of the Longitudinal Proton Structure Function at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Phys.Lett.B 682 (2009) 8-22, 2009.
Inspire Record 817462 DOI 10.17182/hepdata.53740

The reduced cross sections for ep deep inelastic scattering have been measured with the ZEUS detector at HERA at three different centre-of-mass energies, 318, 251 and 225 GeV. From the cross sections, measured double differentially in Bjorken x and the virtuality, Q^2, the proton structure functions FL and F2 have been extracted in the region 5*10^-4 &lt; x &lt;0.007 and 20 &lt; Q^2 &lt; 130 GeV^2.

49 data tables match query

The reduced cross section at Q**2 = 24 GeV**2 for centre-of-mass energy 318.

The reduced cross section at Q**2 = 32 GeV**2 for centre-of-mass energy 318.

The reduced cross section at Q**2 = 45 GeV**2 for centre-of-mass energy 318.

More…

Measurement of neutral and charged current cross-sections in positron proton collisions at large momentum transfer

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 13 (2000) 609-639, 2000.
Inspire Record 506029 DOI 10.17182/hepdata.43872

The inclusive single and double differential cross-sections for neutral and charged current processes with four-momentum transfer squared Q^2 between 150 and 30,000 GeV2 and with Bjorken x between 0.0032 and 0.65 are measured in e^+ p collisions. The data were taken with the H1 detector at HERA between 1994 and 1997, and they correspond to an integrated luminosity of 35.6 pb^-1. The Q^2 evolution of the parton densities of the proton is tested, yielding no significant deviation from the prediction of perturbative QCD. The proton structure function F_2(x,Q^2) is determined. An extraction of the u and d quark distributions at high x is presented. At high Q^2 electroweak effects of the heavy bosons Z0 and W are observed and found to be consistent with Standard Model expectation.

7 data tables match query

The structure function, F2, and the reduced cross section, in NC DIS scattering at Q**2 from 150 to 30000 GeV**2 as a function if x and y. Also tabulated are the QED corrections to the data, which have already been applied. The individual corrections used to calculate F2 from the cross sections are given in the following table.

The various corrections to the cross sections used to calcuate the F2 values given in the previous table. See the text of the paper for more details.

The CC double differential cross section and the structure function term PHI(C=CC) - see text of the paper for details - at Q**2 from 150 to 1 5000 GeV**2 as a function of both x and y. Also tabulated are the QED corrections to the data, which have already been applied.

More…

Di-jet event rates in deep-inelastic scattering at HERA.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 13 (2000) 415-426, 2000.
Inspire Record 472305 DOI 10.17182/hepdata.44322

Di-jet event rates have been measured for deep-inelastic scattering in the kinematic domain ~5 < Q^2 < ~100 GeV^2 and ~10^(-4) < x_Bj < ~10^(-2), and for jet transverse momenta squared p_t^2 > ~Q^2. The analysis is based on data collected with the H1 detector at HERA in 1994 corresponding to an integrated luminosity of about 2 pb^(-1). Jets are defined using a cone algorithm in the photon-proton centre of mass system requiring jet transverse momenta of at least 5 GeV. The di-jet event rates are shown as a function of Q^2 and x_Bj. Leading order models of point-like interacting photons fail to describe the data. Models which add resolved interacting photons or which implement the colour dipole model give a good description of the di-jet event rate. This is also the case for next-to-leading order calculations including contributions from direct and resolved photons.

4 data tables match query

Di-jet rates for 'Symmetric' and 'Asymmetric' scenarios for jet energy cuts.

Di-jet rates for 'Sum' scenario for jet energy cuts.

Di-jet rates for 'Symmetric' and 'Asymmetric' scenarios for jet energy cuts.

More…

ZEUS results on the measurement and phenomenology of F2 at low x and low Q**2.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 7 (1999) 609-630, 1999.
Inspire Record 475922 DOI 10.17182/hepdata.44218

Measurements of the proton structure function $F_2$ for $0.6 < Q^2 < 17 {GeV}^2$ and $1.2 \times 10^{-5} < x <1.9 \times 10^{-3}$ from ZEUS 1995 shifted vertex data are presented. From ZEUS $F_2$ data the slopes $dF_2/d\ln Q^2$ at fixed $x$ and $d\ln F_2/d\ln(1/x)$ for $x < 0.01$ at fixed $Q^2$ are derived. For the latter E665 data are also used. The transition region in $Q^2$ is explored using the simplest non-perturbative models and NLO QCD. The data at very low $Q^2$ $\leq 0.65 {GeV}^2$ are described successfully by a combination of generalised vector meson dominance and Regge theory. From a NLO QCD fit to ZEUS data the gluon density in the proton is extracted in the range $3\times 10^{-5} < x < 0.7$. Data from NMC and BCDMS constrain the fit at large $x$. Assuming the NLO QCD description to be valid down to $Q^2\sim 1 {GeV}^2$, it is found that the $q\bar{q}$ sea distribution is still rising at small $x$ and the lowest $Q^2$ values whereas the gluon distribution is strongly suppressed.

15 data tables match query
More…

Leading neutron production in e+ p collisions at HERA.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Nucl.Phys.B 637 (2002) 3-56, 2002.
Inspire Record 587158 DOI 10.17182/hepdata.46613

The production of neutrons carrying at least 20% of the proton beam energy ($\xl > 0.2$) in $e^+p$ collisions has been studied with the ZEUS detector at HERA for a wide range of $Q^2$, the photon virtuality, from photoproduction to deep inelastic scattering. The neutron-tagged cross section, $e p\to e' X n$, is measured relative to the inclusive cross section, $e p\to e' X$, thereby reducing the systematic uncertainties. For $\xl >$ 0.3, the rate of neutrons in photoproduction is about half of that measured in hadroproduction, which constitutes a clear breaking of factorisation. There is about a 20% rise in the neutron rate between photoproduction and deep inelastic scattering, which may be attributed to absorptive rescattering in the $\gamma p$ system. For $0.64 < \xl < 0.82$, the rate of neutrons is almost independent of the Bjorken scaling variable $x$ and $Q^2$. However, at lower and higher $\xl$ values, there is a clear but weak dependence on these variables, thus demonstrating the breaking of limiting fragmentation. The neutron-tagged structure function, ${{F}^{\rm\tiny LN(3)}_2}(x,Q^2,\xl)$, rises at low values of $x$ in a way similar to that of the inclusive \ff of the proton. The total $\gamma \pi$ cross section and the structure function of the pion, $F^{\pi}_2(x_\pi,Q^2)$ where $x_\pi = x/(1-\xl)$, have been determined using a one-pion-exchange model, up to uncertainties in the normalisation due to the poorly understood pion flux. At fixed $Q^2$, $F^{\pi}_2$ has approximately the same $x$ dependence as $F_2$ of the proton.

18 data tables match query

The XL bins, their acceptance and the acceptance uncertainty. The RH columnshows the contribution from the energy-scale uncertainty - this is completely c orrelated between the bins.

The slope of the PT**2 distribution from the 1995 DIS data. The uncertainties shown in this table were communicated to us by the authors, and supercede those given in the paper.

The normalized cross section (1/SIG)DSIG/dXL for leading neutrons with THETA < 0.8 mrad with statistical errors only.. For the lowest Q**2 data, the normalization uncertainty is +-5 PCT, and with XL > 0.52 there is a further normalization uncertainty of +-4 PCT.. For the intermediate Q**2 and DIS data the normalization uncertainty is +-4 PCT.

More…

A measurement of the proton structure function F2(x,Q**2) at low x and low Q**2 at HERA.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Nucl.Phys.B 497 (1997) 3-30, 1997.
Inspire Record 441392 DOI 10.17182/hepdata.44625

The results of a measurement of the proton structure function F_2(x,Q~2)and the virtual photon-proton cross section are reported for momentum transfers squared Q~2 between 0.35 GeV~2 and 3.5 GeV~2 and for Bjorken-x values down to 6 10~{-6} using data collected by the HERA experiment H1 in 1995. The data represent an increase in kinematic reach to lower x and Q~2 values of about a factor of 5 compared to previous H1 measurements. Including measurements from fixed target experiments the rise of F_2 with decreasing x is found to be less steep for the lowest Q~2 values measured. Phenomenological models at low Q~2 are compared with the data.

18 data tables match query

No description provided.

No description provided.

No description provided.

More…