Pion Form-Factor from 480-MeV to 1100-MeV

Quenzer, A. ; Ribes, M. ; Rumpf, F. ; et al.
Phys.Lett.B 76 (1978) 512-516, 1978.
Inspire Record 134061 DOI 10.17182/hepdata.27443

The pion form factor is measured in the reaction e + e − → π + π − for center of mass energies in the range 480–1100 MeV. Our results are first analysed in terms of the conventional Vector Meson Dominance formalism, and then taking into account the ωπ inelastic channel. The result of this later formalism is a pion form factor ( F π ) which fits quite well all the existing data on F π both in the timelike and spacelike regions, and pion mean square radius of 〈 r π 2 〉 = 0.460 ± 0.011 fm 2 or 〈r π 2 〉 1 2 = 0.678 ± 0.008 fm .

1 data table match query

No description provided.


Measurement of the proton electromagnetic form-factors in the timelike region at 8.9-GeV**2 - 13-GeV**2

The E760 collaboration Armstrong, T.A. ; Bettoni, D. ; Bharadwaj, V. ; et al.
Phys.Rev.Lett. 70 (1993) 1212-1215, 1993.
Inspire Record 340584 DOI 10.17182/hepdata.19781

Cross sections for the reaction pp¯→e+e− have been measured at s=8.9,12.4, and 13.0 GeV2. The cross sections have been analyzed to obtain the proton electromagnetic form factors in the timelike region. We find that GM(q2)∝q−4αs2(q2) for q2≥5 (GeV/c)2.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Determination of the electric and magnetic form-factors of the proton in the timelike region

Bardin, G. ; Burgun, G. ; Calabrese, R. ; et al.
Nucl.Phys.B 411 (1994) 3-32, 1994.
Inspire Record 376134 DOI 10.17182/hepdata.32865

The s dependence of the electromagnetic proton form factors in the time-like region has been determined from the threshold ( s = 4 M p 2 ) up to s = 4.2 GeV 2 . Data were collected in a dedicated experiment performed at the LEAR antiproton ring at CERN, increasing by one order of magnitude the available statistics. Total and differential cross section of the p p → e − e + reaction have been measured. The electric and magnetic form factors are found to have comparable value. The observed form factor shows a clear steep s dependence close to the threshold.

6 data tables match query

No description provided.

No description provided.

No description provided.

More…

Determination of the Charged Pion Form Factor at Q2=1.60 and 2.45 (GeV/c)2

The Jefferson Lab F(pi)-2 collaboration Horn, T. ; Aniol, K. ; Arrington, J. ; et al.
Phys.Rev.Lett. 97 (2006) 192001, 2006.
Inspire Record 721062 DOI 10.17182/hepdata.31560

The H(e,e'pi+)n cross section was measured at four-momentum transfers of Q2=1.60 and 2.45 GeV2 at an invariant mass of the photon nucleon system of W=2.22 GeV. The charged pion form factor (F_pi) was extracted from the data by comparing the separated longitudinal pion electroproduction cross section to a Regge model prediction in which F_pi is a free parameter. The results indicate that the pion form factor deviates from the charge-radius constrained monopole form at these values of Q2 by one sigma, but is still far from its perturbative Quantum Chromo-Dynamics prediction.

3 data tables match query

Separated cross sections at mean Q**2 of 1.60 GeV**2.

Separated cross sections at mean Q**2 of 2.45 GeV**2.

Extracted values of the charged pion form-factor. Errors are the statistical and experimental systematics combined in quadrature.


Study of the Reaction $e^+ e^- \to K^+ K^-$ in the Energy Range 1350 $\le \sqrt{s} \le$ 2400-{MeV}

The DM2 collaboration Bisello, D. ; Busetto, G. ; Castro, A. ; et al.
Z.Phys.C 39 (1988) 13, 1988.
Inspire Record 262690 DOI 10.17182/hepdata.15622

Thee+e−→K+K− cross section has been measured from about 750 events in the energy interval\(1350 \leqq \sqrt s\leqq 2400 MeV\) with the DM2 detector at DCI. TheK± form factor |FF±| cannot be explained by the ρ, ω, ϕ and ρ′(1600). An additional resonant amplitude at 1650 MeV has to be added as suggested by a previous experiment.

2 data tables match query

No description provided.

No description provided.


Precise determination of the electromagnetic form-factor of the proton in the timelike region up to s = 4.2-GeV**2

Bardin, G. ; Burgun, G. ; Calabrese, R. ; et al.
Phys.Lett.B 257 (1991) 514-518, 1991.
Inspire Record 314621 DOI 10.17182/hepdata.48504

The s dependence of the proton form factor in the time-like region has been determined up to s =4.2 GeV 2 , assuming the validity of the | G e | = | G m | = | G | hypothesis. Data were taken in a dedicated experiment performed at the LEAR antiproton ring at CERN, increasing by one order of magnitude the available statistics on the proton form factor near threshold in the time-like region. Our result consist of cross section measurements of the p p → e + e − reaction for different beam momenta in the kinematical r 3.6⩽ s ⩽4.2 GeV 2 . The observed s dependence of the form factor close to threshold differs appreciably from the one suggested by previous experiments.

3 data tables match query

No description provided.

No description provided.

Results of one-parameter fit. |Ge|=|Gm| assumed.


Measurements of the electric and magnetic form-factors of the proton from Q**2 = 1.75-GeV/c**2 to 8.83-GeV/c**2

Bosted, Peter E. ; Clogher, L. ; Lung, A. ; et al.
Phys.Rev.Lett. 68 (1992) 3841-3844, 1992.
Inspire Record 332962 DOI 10.17182/hepdata.19849

The proton elastic electric and magnetic form factors, GEp(Q2) and GMp(Q2), have been separately measured in the range Q2=1.75 to 8.83 (GeV/c)2, more than doubling the Q2 range of previous data. Scaled by the dipole fit, GD(Q2), the results for GMp(Q2)/μpGD(Q2) decrease smoothly from 1.05 to 0.91, while GEp(Q2)/GD(Q2) is consistent with unity. Comparisons are made to QCD sum rule, diquark, constitutent quark, and vector meson dominance models, none of which agree with all of the new data. The ratio Q2F2/F1 approaches a constant value for Q2>3 (GeV/c)2.

2 data tables match query

Magnetic form factors.

Electric form factors.


Precision measurements of the timelike electromagnetic form factors of pion, kaon, and proton.

The CLEO collaboration Pedlar, T.K. ; Cronin-Hennessy, D. ; Gao, K.Y. ; et al.
Phys.Rev.Lett. 95 (2005) 261803, 2005.
Inspire Record 693873 DOI 10.17182/hepdata.130708

Using 20.7 pb^-1 of e+e- annihilation data taken at sqrt{s} = 3.671 GeV with the CLEO-c detector, precision measurements of the electromagnetic form factors of the charged pion, charged kaon, and proton have been made for timelike momentum transfer of |Q^2| = 13.48 GeV^2 by the reaction e+e- to h+h-. The measurements are the first ever with identified pions and kaons of |Q^2| > 4 GeV^2, with the results F_pi(13.48 GeV^2) = 0.075+-0.008(stat)+-0.005(syst) and F_K(13.48 GeV^2) = 0.063+-0.004(stat)+-0.001(syst). The result for the proton, assuming G^p_E = G^p_M, is G^p_M(13.48 GeV^2) = 0.014+-0.002(stat)+-0.001(syst), which is in agreement with earlier results.

2 data tables match query

Born cross section of $e^+e^-\rightarrow h^+h^-$

Timelike form factor


High Precision Measurements of the Form Factors of Pion, Kaon, and Proton at Large Timelike Momentum Transfers

Seth, Kamal K. ; Dobbs, S. ; Metreveli, Z. ; et al.
Phys.Rev.Lett. 110 (2013) 022002, 2013.
Inspire Record 1189656 DOI 10.17182/hepdata.130771

High precision measurements of the form factors of proton, pion, and kaon for timelike momentum transfers of |Q^2|=s=14.2 and 17.4 GeV^2 have been made. Data taken with the CLEO-c detector at sqrt(s)=3.772 GeV and 4.170 GeV, with integrated luminosities of 805 pb^-1 and 586 pb^-1, respectively, have been used to study $e^+e^-$ annihilations into pi+pi-, K+K^-, and ppbar. The perturbative QCD prediction that at large Q^2 the quantity Q^2F(Q^2) for vector mesons is nearly constant, and varies only weakly as the strong coupling constant alpha_S(Q^2) is confirmed for both pions and kaons. In contrast, a significant difference is observed between the values of the corresponding pQCD suggested near-constant quantity, |Q^4|G_M(|Q^2|)/mu_p for protons at |Q^2|=14.2 GeV^2 and 17.4 GeV^2. The results suggest the constancy of |Q^2|G_M(|Q^2|)/mu_p, instead.

2 data tables match query

Born cross section of $e^+e^-\rightarrow h^+h^-$

Timelike form factor


Evidence for spin one resonance production in the reaction gamma gamma* ---> pi+ pi- pi0 pi0

The TPC/Two Gamma collaboration Bauer, Daniel A. ; Belcinski, R. ; Berg, R.C. ; et al.
Phys.Rev.D 48 (1993) 3976-3987, 1993.
Inspire Record 353748 DOI 10.17182/hepdata.22574

Using data from the TPC/Two-Gamma experiment at the SLAC e+e− storage ring PEP, a C=+1 resonance has been observed in the π+π−π0γ final state resulting from the fusion of one nearly real and one quite virtual photon. The actual decay channel is probably π+π−π0π0, where one final-state photon is not detected, and the mass of the fully reconstructed state would be approximately 1525 MeV. A four-pion decay mode in turn implies that the resonance has even isospin. The nonobservation of this R(1525) when both initial-state photons are nearly real suggests a spin-1 assignment. Since the large measured value of the product of the branching ratio into π+π−π0π0 and the γγ coupling makes it unlikely that this state is the mostly s¯s f1(1510), its interpretation may lie outside of conventional meson spectroscopy. There is a second, less-significant enhancement observed in the same reaction at a four-pion mass centered around 2020 MeV.

2 data tables match query

No description provided.

Coupling parameter times the effective form factor.