Measurement of charged particle multiplicity distributions in DIS at HERA and its implication to entanglement entropy of partons

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Baty, A. ; et al.
Eur.Phys.J.C 81 (2021) 212, 2021.
Inspire Record 1827840 DOI 10.17182/hepdata.102570

Charged particle multiplicity distributions in positron-proton deep inelastic scattering at a centre-of-mass energy $\sqrt{s}=319$ GeV are measured. The data are collected with the H1 detector at HERA corresponding to an integrated luminosity of $136$ pb${}^{-1}$. Charged particle multiplicities are measured as a function of photon virtuality $Q^2$, inelasticity $y$ and pseudorapidity $\eta$ in the laboratory and the hadronic centre-of-mass frames. Predictions from different Monte Carlo models are compared to the data. The first and second moments of the multiplicity distributions are determined and the KNO scaling behaviour is investigated. The multiplicity distributions as a function of $Q^2$ and the Bjorken variable $x_{\rm Bj}$ are converted to the hadron entropy $S_{\rm hadron}$, and predictions from a quantum entanglement model are tested.

10 data tables match query

Charged particle multiplicity distribution $P(N)$ measured as a function of the number of charged particles $N$ in 4x4 kinematic bins of $Q^2$ and $y$.

Charged particle multiplicity distribution $P(N)$ measured as a function of the number of charged particles $N$ in three overlapping pseudorapidity ranges $-1.2<\eta_{lab}\vert<0.2$, $-0.5<\eta_{lab}\vert<0.9$ and $0.2<\eta_{lab}\vert<1.6$, subdivided into 4x4 kinematic bins of $Q^2$ and $y$.

Charged particle multiplicity distribution $P(N)$ measured as a function of the number of charged particles $N$ with the additional restriction to select only particles from the current region of the Breit frame $0<\eta^{*}<4$, in 4x4 kinematic bins of $Q^2$ and $y$.

More…

Measurement of Exclusive $\pi^{+}\pi^{-}$ and $\rho^0$ Meson Photoproduction at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Baty, A. ; et al.
Eur.Phys.J.C 80 (2020) 1189, 2020.
Inspire Record 1798511 DOI 10.17182/hepdata.102569

Exclusive photoproduction of $\rho^0(770)$ mesons is studied using the H1 detector at the $ep$ collider HERA. A sample of about 900000 events is used to measure single- and double-differential cross sections for the reaction $\gamma p \to \pi^{+}\pi^{-}Y$. Reactions where the proton stays intact (${m_Y{=}m_p}$) are statistically separated from those where the proton dissociates to a low-mass hadronic system ($m_p{<}m_Y{<}10$ GeV). The double-differential cross sections are measured as a function of the invariant mass $m_{\pi\pi}$ of the decay pions and the squared $4$-momentum transfer $t$ at the proton vertex. The measurements are presented in various bins of the photon-proton collision energy $W_{\gamma p}$. The phase space restrictions are $0.5 < m_{\pi\pi} < 2.2$ GeV, ${\vert t\vert < 1.5}$ GeV${}^2$, and ${20 < W_{\gamma p} < 80}$ GeV. Cross section measurements are presented for both elastic and proton-dissociative scattering. The observed cross section dependencies are described by analytic functions. Parametrising the $m_{\pi\pi}$ dependence with resonant and non-resonant contributions added at the amplitude level leads to a measurement of the $\rho^{0}(770)$ meson mass and width at $m_\rho = 770.8\ {}^{+2.6}_{-2.7}$ (tot) MeV and $\Gamma_\rho = 151.3\ {}^{+2.7}_{-3.6}$ (tot) MeV, respectively. The model is used to extract the $\rho^0(770)$ contribution to the $\pi^{+}\pi^{-}$ cross sections and measure it as a function of $t$ and $W_{\gamma p}$. In a Regge asymptotic limit in which one Regge trajectory $\alpha(t)$ dominates, the intercept $\alpha(t{=}0) = 1.0654\ {}^{+0.0098}_{-0.0067}$ (tot) and the slope $\alpha^\prime(t{=}0) = 0.233\ {}^{+0.067 }_{-0.074 }$ (tot) GeV${}^{-2}$ of the $t$ dependence are extracted for the case $m_Y{=}m_p$.

28 data tables match query

Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction off protons, differential in the dipion mass. The tabulated cross sections are $\gamma p$ cross sections but can be converted to $ep$ cross sections using the effective photon flux $\Phi_{\gamma/e}$.

Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction off protons, differential in the dipion mass --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.

Fit of elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\pi^{+}\pi^{-}$ photoproduction cross section off protons with a Soeding-inspired analytic function including $\rho$ and $\omega$ meson resonant contributions as well as a continuum background which interfere at the amplitude level. Parameters with subscript "el" and "pd" correspond to elastic and proton-dissociative cross sections, respectively.

More…

The spin-dependent structure function g1(x) of the proton from polarized deep-inelastic muon scattering.

The Spin Muon (SMC) collaboration Adeva, B. ; Arik, E. ; Arvidson, A. ; et al.
Phys.Lett.B 412 (1997) 414-424, 1997.
Inspire Record 448371 DOI 10.17182/hepdata.47369

We present a new measurement of the virtual photon proton asymmetry A 1 p from deep inelastic scattering of polarized muons on polarized protons in the kinematic range 0.0008 < x < 0.7 and 0.2 < Q 2 < 100 GeV 2 . With this, the statistical uncertainty of our measurement has improved by a factor of 2 compared to our previous measurements. The spin-dependent structure function g 1 p is determined for the data with Q 2 > 1 GeV 2 . A perturbative QCD evolution in next-to-leading order is used to determine g 1 p ( x ) at a constant Q 2 . At Q 2 = 10 GeV 2 we find, in the measured range, ∫ 0.003 0.7 g 1 P (x) d x=0.139±0.006 ( stat ) ±0.008 ( syst ) ±0.006( evol ) . The value of the first moment Г 1 P = ∫ 0 1 g 1 p (x) d x of g 1 p depends on the approach used to describe the behaviour of g 1 p at low x . We find that the Ellis-Jaffe sum rule is violated. With our published result for Γ 1 d we confirm the Bjorken sum rule with an accuracy of ≈ 15% at the one standard deviation level.

4 data tables match query

The virtual photon proton asymmetries. Only statistical errors are given.

The virtual photon proton asymmetries A1 and the spin dependent structure function G1.

The spindependent tructure function G1 evolved to Q2 = 10 GEV**2.. The second DSYS for this indicates the uncertainty in the QCD evolution.

More…

A next-to-leading order QCD analysis of the spin structure function g1.

The Spin Muon collaboration Adeva, B. ; Akdogan, T. ; Arik, E. ; et al.
Phys.Rev.D 58 (1998) 112002, 1998.
Inspire Record 471982 DOI 10.17182/hepdata.49415

We present a next-to-leading order QCD analysis of the presently available data on the spin structure function g1 including the final data from the Spin Muon Collaboration. We present results for the first moments of the proton, deuteron, and neutron structure functions, and determine singlet and nonsinglet parton distributions in two factorization schemes. We also test the Bjorken sum rule and find agreement with the theoretical prediction at the level of 10%.

3 data tables match query

Integrals of the nonsinglet (NS) structure function. SMC + E143 data.

Integrals of the nonsinglet (NS) structure function. SMC data only.

ALPHA_S(M_Z) estimated as free parameter of the fit.


Centrality dependence of the high p(T) charged hadron suppression in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, Stephen Scott ; Ajitanand, N.N. ; et al.
Phys.Lett.B 561 (2003) 82-92, 2003.
Inspire Record 590820 DOI 10.17182/hepdata.141648

PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.

6 data tables match query

Number of participants and binary collisions and their systematic errors for the individual centrality selections used in this analysis. Also given is the ratio of the number of binary collisions for the most central sample relative to the one for each sample. The last column quantifies the ratio of binary collisions to participant pairs.

The ratio $p/h$ represents the proton plus anti-proton yield relative to the total charged hadron multiplicity. This shows the $p_T$ dependence of $p/h$ for minimum bias events.

The ratio $p/h$ represents the proton plus anti-proton yield relative to the total charged hadron multiplicity. This shows the centrality dependence of $p/h$ for $p_T >$ 1.8 GeV/$c$.

More…

Centrality dependence of charged particle multiplicity in Au Au collisions at s(N N)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 86 (2001) 3500-3505, 2001.
Inspire Record 539140 DOI 10.17182/hepdata.50270

We present results for the charged-particle multiplicity distribution at mid-rapidity in Au - Au collisions at sqrt(s_NN)=130 GeV measured with the PHENIX detector at RHIC. For the 5% most central collisions we find $dN_{ch}/d\eta_{|\eta=0} = 622 \pm 1 (stat) \pm 41 (syst)$. The results, analyzed as a function of centrality, show a steady rise of the particle density per participating nucleon with centrality.

1 data table match query

130 GeV is sqrt(S) per nucleon-nucleon collision. N(C=N_NUCLEONS) and N(C=N_COLLISONS) are the number of participating nucleons and binary collisions. The statistical errors are negligible and only systematic errors are quoted. COL(NAME=CENTRALITY) is centrality.


Centrality dependence of pi+-, K+-, p and anti-p production from s(NN)**(1/2) = 130-GeV Au + Au collisions at RHIC.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 88 (2002) 242301, 2002.
Inspire Record 568437 DOI 10.17182/hepdata.19421

Identified pi^[+/-] K^[+/-], p and p-bar transverse momentum spectra at mid-rapidity in sqrt(s_NN)=130 GeV Au-Au collisions were measured by the PHENIX experiment at RHIC as a function of collision centrality. Average transverse momenta increase with the number of participating nucleons in a similar way for all particle species. The multiplicity densities scale faster than the number of participating nucleons. Kaon and nucleon yields per participant increase faster than the pion yields. In central collisions at high transverse momenta (p_T greater than 2 GeV/c), anti-proton and proton yields are comparable to the pion yields.

18 data tables match query

Transverse momentum spectra for PI+ in the midrapidity range for the centrality region 0 to 5 PCT. Errors are combined statistical and systematics.

Transverse momentum spectra for PI- in the midrapidity range for the centrality region 0 to 5 PCT. Errors are combined statistical and systematics.

Transverse momentum spectra for K+ in the midrapidity range for the centrality region 0 to 5 PCT. Errors are combined statistical and systematics.

More…

Measurement of the mid-rapidity transverse energy distribution from s(N N)**(1/2) = 130-GeV Au + Au collisions at RHIC.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 87 (2001) 052301, 2001.
Inspire Record 555603 DOI 10.17182/hepdata.31419

The first measurement of energy produced transverse to the beam direction at RHIC is presented. The mid-rapidity transverse energy density per participating nucleon rises steadily with the number of participants, closely paralleling the rise in charged-particle density, such that E_T / N_ch remains relatively constant as a function of centrality. The energy density calculated via Bjorken's prescription for the 2% most central Au+Au collisions at sqrt(s_NN)=130 GeV is at least epsilon_Bj = 4.6 GeV/fm^3 which is a factor of 1.6 larger than found at sqrt(s_NN)=17.2 GeV (Pb+Pb at CERN).

1 data table match query

130 GeV is sqrt(S) per nucleon-nucleon collision. The statistical errors are negligible and only systematic errors are quoted. COL(NAME=CENTRALITY) is centrality.


Suppression of hadrons with large transverse momentum in central Au+Au collisions at s(NN)**(1/2) = 130-GeV

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 88 (2002) 022301, 2002.
Inspire Record 562409 DOI 10.17182/hepdata.110700

Transverse momentum spectra for charged hadrons and for neutral pions in the range 1 GeV/c $< p_T <$ 5 GeV/c have been measured by the PHENIX experiment at RHIC in Au+Au collisions at $\sqrt{s_{_{NN}}}=130$ GeV. At high $p_T$ the spectra from peripheral nuclear collisions are consistent with the naive expectation of scaling the spectra from p+p collisions by the average number of binary nucleon- nucleon collisions. The spectra from central collisions are significantly suppressed when compared to the binary- scaled p+p expectation, and also when compared to similarly binary-scaled peripheral collisions, indicating a novel nuclear effect in central nuclear collisions at RHIC energies.

12 data tables match query

The yields per event at mid-rapidity for neutral pions as a function of $p_T$ for 0-80% from the PbSc detector.

The yields per event at mid-rapidity for neutral pions as a function of $p_T$ for 60-80% from the PbSc detector.

The yields per event at mid-rapidity for neutral pions as a function of $p_T$ for 0-10% from the PbGl detector.

More…

Measurement of the Lambda and Antilambda particles in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 89 (2002) 092302, 2002.
Inspire Record 585561 DOI 10.17182/hepdata.139716

We present results on the measurement of lambda and lambda^bar production in Au+Au collisions at sqrt(s_NN)=130 GeV with the PHENIX detector at RHIC. The transverse momentum spectra were measured for minimum bias and for the 5% most central events. The lambda^bar/lambda ratios are constant as a function of p_T and the number of participants. The measured net lambda density is significantly larger than predicted by models based on hadronic strings (e.g. HIJING) but in approximate agreement with models which include the gluon junction mechanism.

9 data tables match query

Transverse momentum spectra of $\Lambda$ and $\bar{\Lambda}$ for minimum-bias and for the $5\%$ most central events.

The ratio of $\bar{\Lambda}$/$\Lambda$ as a function of $p_T$.

The ratio of $\bar{\Lambda}$/$\Lambda$ as a function of the number of participants.

More…