QCD analyses and determinations of alpha(s) in e+ e- annihilation at energies between 35-GeV and 189-GeV.

The JADE & OPAL collaborations Pfeifenschneider, P. ; Biebel, O. ; Movilla Fernandez, P.A. ; et al.
Eur.Phys.J.C 17 (2000) 19-51, 2000.
Inspire Record 513337 DOI 10.17182/hepdata.12882

We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.

80 data tables match query

Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.

Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.

Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.

More…

Inclusive neutral vector meson production in hadronic Z0 decays

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 56 (1992) 521-536, 1992.
Inspire Record 336772 DOI 10.17182/hepdata.14530

Results are reported of a study of neutral vector meson production in multihadronicZ0 decays in the OPAL experiment at LEP. Pions and kaons have been identified by specific ionisation energy loss andK±π∓ andK+K− mass spectra have been fitted, in bins of the scaled momentum variablexp, to combinations of resonance signals and non-resonant backgrounds. Rates are given forK*(892)° and ø(1020), and production cross sections are compared to the predictions of Monte Carlo models. Overall multiplicities have been determined as 0.76±0.07±0.06K*(892)° and 0.086±0.015±0.010 ø(1020) per hadronicZ0 decay (the quoted errors are respectively statistical and systematic). Momentum dependent distortions of the ππ mass spectra, possibly associated indirectly with Bose-Einstein effects, have prevented reliable measurement of the ρ(770)° cross section in this study.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Photon and light meson production in hadronic Z0 decays.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Eur.Phys.J.C 5 (1998) 411-437, 1998.
Inspire Record 470419 DOI 10.17182/hepdata.49498

The inclusive production rates and differential cross-sections of photons and mesons with a final state containing photons have been measured with the OPAL detector at LEP. The light mesons covered by the measurements are the \pi^0, \eta, \rho(770)+-, \omega(782), \eta'(958) and a_0(980)+-. The particle multiplicities per hadronic Z^0 decay, extrapolated to the full energy range, are: <n_\gamma> = 20.97 +/- 0.02 +/- 1.15, <n_\pi^0> = 9.55 +/- 0.06 +/- 0.75, <n_\eta> = 0.97 +/- 0.03 +/- 0.11, <n_\rho^+-> = 2.40 +/- 0.06 +/- 0.43, <n_\omega> = 1.04 +/- 0.04 +/- 0.14, <n_\eta> = 0.14 +/- 0.01 +/- 0.02, <n_a_0+-> = 0.27 +/- 0.04 +/- 0.10. where the first errors are statistical and the second systematic. In general, the results are in agreement with the predictions of the JETSET and HERWIG Monte Carlo models.

15 data tables match query

Particle multiplicities per hadronic decay extrapolated to the full energy range.

Photon fragmentation function.

Photon fragmentation function.

More…

Multiplicities of pi0, eta, K0 and of charged particles in quark and gluon jets.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Ainsley, C. ; et al.
Eur.Phys.J.C 17 (2000) 373-387, 2000.
Inspire Record 529898 DOI 10.17182/hepdata.49911

We compared the multiplicities of pizero, eta, Kzero and of charged particles in quark and gluon jets in 3-jet events, as measured by the OPAL experiment at LEP. The comparisons were performed for distributions unfolded to 100% pure quark and gluon jets, at an effective scale Qjet which took into account topological dependences of the 3-jet environment. The ratio of particle multiplicity in gluon jets to that in quark jets as a function of Qjet for pizero, eta and Kzero was found to be independent of the particle species. This is consistent with the QCD prediction that the observed enhancement in the mean particle rate in gluon jets with respect to quark jets should be independent of particle species. In contrast to some theoretical predictions and previous observations, we observed no evidence for an enhancement of eta meson production in gluon jets with respect to quark jets, beyond that observed for charged particles. We measured the ratio of the slope of the average charged particle multiplicity in gluon jets to that in quark jets, C, and we compared it to a next-to-next-to-next-to leading order calculation. Our result, C=2.27+-0.20(stat+syst),is about one standard deviation higher than the perturbative prediction.

2 data tables match query

No description provided.

No description provided.


Particle multiplicity of unbiased gluon jets from e+ e- three jet events

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 23 (2002) 597-613, 2002.
Inspire Record 565517 DOI 10.17182/hepdata.49742

The charged particle multiplicities of two- and three-jet events from the reaction e+e- -> Z0 -> hadrons are measured for Z0 decays to light quark (uds) flavors. Using recent theoretical expressions to account for biases from event selection, results corresponding to unbiased gluon jets are extracted over a range of jet energies from about 11 to 30 GeV. We find consistency between these results and direct measurements of unbiased gluon jet multiplicity from upsilon and Z0 decays. The unbiased gluon jet data including the direct measurements are compared to corresponding results for quark jets. We perform fits based on analytic expressions for particle multiplicity in jets to determine the ratio r = Ng/Nq of multiplicities between gluon and quark jets as a function of energy. We also determine the ratio of slopes, r(1) = (dNg/dy)/(dNq/dy), and of curvatures, r(2) = (d2Ng/dy2)/(d2Nq/dy2), where y specifies the energy scale. At 30 GeV, we find r = 1.422 +/- 0.051, r(1) = 1.761 +/- 0.071 and r(2) = 1.98 +/- 0.13, where the uncertainties are the statistical and systematic terms added in quadrature. These results are in general agreement with theoretical predictions. In addition, we use the measurements of the energy dependence of Ng and Nq to determine an effective value of the ratio of QCD color factors, CA/CF. Our result, CA/CF = 2.23 +/- 0.14 (total), is consistent with the QCD value of 2.25.

4 data tables match query

Measurements of the mean charged particle multiplicity of biased two-jet uds flavour events from Z0 decays as a function of the transverse momentum cutoff PT(C=LU) used to separate two- and three-jet events.

Measurements of the mean charged particle multiplicity of three-jet uds flavour 'Y events' from Z0 decays, as a function of the angle THETA1 between the lowest two energy jets. The results for the quark jet scale SQRT(S(C=QQBAR)) and the gluon jet scales PT(C=LU) and PT(C=LE) are also given.

Measurements of the unbiased gluon multiplicity as a function of the energy scale Q=PT(C=LU). The corresponding bins of THETA1 in 'Y events' are also indicated.

More…

Charged particle multiplicities in heavy and light quark initiated events above the Z0 peak.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 550 (2002) 33-46, 2002.
Inspire Record 601225 DOI 10.17182/hepdata.49792

We have measured the mean charged particle multiplicities separately for bbbar, ccbar and light quark (uubar, ddbar, ssbar) initiated events produced in e+e- annihilations at LEP. The data were recorded with the OPAL detector at eleven different energies above Z0 peak, corresponding to the full statistics collected at LPE1.5 and LEP2. The difference in mean charged and particle multiplicities for bbbar and light quark events, delta_bl, measured over this energy range is consistent with an energy independent behaviour, as predicted by QCD, but is inconsistent with the prediction of a more phenomenological approach which assumes that the multiplicity accompanying the decay of a heavy quark is independent of the quark mass itself. Our results, which can be combined into the single measurement delta_bl = 3.44+-0.40(stat)+-0.89(syst) at a luminosity weighted average centre-of mass energy of 195 GeV, are also consistent with an energy independent behaviour as extrapolated from lower energy data.

1 data table match query

Corrected mean charged particle multiplicities for the different quark quarkbar initiated events.


A Study of mean subjet multiplicities in two and three jet hadronic Z0 decays

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 63 (1994) 363-376, 1994.
Inspire Record 372997 DOI 10.17182/hepdata.48236

This paper describes an analysis of sub-jet multiplicities, which are expected to be sensitive to the properties of soft gluon radiation, in hadronic decays of theZ0. Two- and three-jet event samples are selected using thek⊥ jet clustering algorithm at a jet resolution scaley1. The mean sub-jet multiplicity as a function of the sub-jet resolution,y0, is determined separately for both event samples by reapplying the same jet algorithm at resolution scalesy0<y1. These measurements are compared with recent perturbative QCD calculations based on the summation of leading and next-to-leading logarithms, and with QCD Monte Carlo models. The analytic calculations provide a good description of the sub-jet multiplicity seen in three- and two-jet mvents in the perturbative region (y0≈y1)), and the measured form of the data is in agreement with the expectation based on coherence of soft gluon radiation. The analysis provides good discrimination between Monte Carlo models, and those with a coherent parton shower are preferred by the data. The analysis suggests that coherence effects are present in the data.

4 data tables match query

Ratio of multiplicities of sub-jets from 3 and 2 jet samples. Data are corrected to the hadron level and have combined statistical and systematic errors.

Sub-jet multiplicity for 3 jet sample. Data corrected to the hadron level and have combined statistical and systematic errors.

Sub-jet multiplicity for 2 jet sample. Data corrected to the hadron level and have combined statistical and systematic errors.

More…

A Measurement of the production of D*+- mesons on the Z0 resonance

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 67 (1995) 27-44, 1995.
Inspire Record 382219 DOI 10.17182/hepdata.48317

We have studied the production of D*± mesons in a sample of 1.25 million multihadronic decays of the Z0, in which 1969 candidates have been identified. We have determined the total multiplicity of charged D* mesons in multihadronic Z0 decays to be

5 data tables match query

No description provided.

Multiplicity data uncorrected for decay branching ratios.

No description provided.

More…

QCD studies using a cone based jet finding algorithm for e+ e- collisions at LEP

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 63 (1994) 197-212, 1994.
Inspire Record 373000 DOI 10.17182/hepdata.48238

We describe a cone-based jet finding algorithm (similar to that used in\(\bar p\)p experiments), which we have applied to hadronic events recorded using the OPAL detector at LEP. Comparisons are made between jets defined with the cone algorithm and jets found by the “JADE” and “Durham” jet finders usually used ine+e− experiments. Measured jet rates, as a function of the cone size and as a function of the minimum jet energy, have been compared with O(αs2) calculations, from which two complementary measurements\(\alpha _s \left( {M_{Z^0 } } \right)\) have been made. The results are\(\alpha _s \left( {M_{Z^0 } } \right)\)=0.116±0.008 and\(\alpha _s \left( {M_{Z^0 } } \right)\)=0.119±0.008 respectively, where the errors include both experimental and theoretical uncertainties. Measurements are presented of the energy flow inside jets defined using the cone algorithm, and compared with equivalent data from\(\bar p\)p interactions, reported by the CDF collaboration. We find that the jets ine+e− are significantly narrower than those observed in\(\bar p\)p. The main contribution to this effect appears to arise from differences between quark- and gluon-induced jets.

16 data tables match query

Measured 2 jet production rate as a function of EPSILON, the minimum energy of a jet for a fixed cone radius R = 0.7 radians.

Measured 2 jet production rate as a function of R, the jet cone radius, for a fixed value of the minimum jet energy, EPSILON, of 7 GeV.

Measured 3 jet production rate as a function of EPSILON, the minimum energy of a jet for a fixed cone radius R = 0.7 radians.

More…

A Study of differences between quark and gluon jets using vertex tagging of quark jets

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 58 (1993) 387-404, 1993.
Inspire Record 352789 DOI 10.17182/hepdata.48418

Quark and gluon jets with equal energies are identified in three-jet hadronicZ0 events, using reconstructed secondary vertices from heavy quark decay in conjunction with energy orderi

1 data table match query

No description provided.